

Recurring in-stent restenosis: what is the best management ?

Pr E Ducasse MD, PhD, FEVBS Unit of vascular surgery Bordeaux - France

Speaker name:

E Ducasse

I have the following potential conflicts of interest to report:

Consulting

Abbott, Alvimedica, Bard, Biotronik, Boston-scientific, Cook, Cordis, Gore, Lutonix, Medtronic, Spectranetric

Vessel preparation native vessel

- Necessary for maximum efficiency
- Pre-dilatation and adequate (size and time) inflation
- We have learnt a lot with DEB use
 - Global IM.PACT on SFA
 - Deep IM.PACT on BTK

Vessel preparation native vessel

DEB IV

In.Pact Deep - What went wrong and why?

Effectivity –	angiograpł	nic control	
12-month Outcomes [1]	DEB	РТА	p
Mean Lesion Length (mm±SD)	59.1 ± 41.7	79.7 ± 74.6	0.060
Binary (50%) Rest. Rate (%)	41.0% (25/61)	35.5% (11/31)	0.609
Occlusion Rate (%)	11.5% (7/61)	16.1% (5/31)	0.531
Longitudinal Restenosis (%) ^[2]	62.7 ± 56.2	93.2 ± 60.8	0.167
-J			
Revalidated Lumen Loss [3]	DEB	ΡΤΑ	P
12-month LLL (mm, mean <u>+</u> SD)	0.51 ± 0.66	0.60 ± 0.97	0.654

- Problem of the control group: Only 35% restenosis after 12 months = best data ever reported
- Qualtity of angiograms good enough to detect a difference of 0.2 mm?
 bad flow in BTK arteries
 - CLI patients with slow run-off + no artefact free image
- Selection of the angiographic cohort

Vessel preparation native vessel

Use the correct technique!

	Inflation Time (sec)		
	30	180	P Value
Major dissection (grades 3 and 4)	16	5	.010
Minor or no dissection (grades 1 and 2)	21	32	.010
Further interventions	20	9	.017
Stent	4	1	
Further dilation (prolonged dilation, dilation with larger diameter)	16	8	
Residual stenosis (>30%)	12	5	.097
Complication (embolization, thrombosis)	1	1	
Mean ankle-brachial index (before, after intervention)	0.66, 0.87	0.65, 0.84	

Prolonged inflation (180 sec) improves the immediate result of BTK angioplasty compared to short dilatation times (30 sec)

Significantly fewer major dissections and a modest reduction of residual stenoses are observed

Zorger et al. 2002. J Vasc Interv Radiol

Vessel preparation for ISR

• Does it really exist ?

- PTA: very bad results (TOSAKA III ++++)
- Cutting Balloon : poorly reported
- New stent ? DES ?
- Debulking : not adapted or any recommendation for use
- Laser excimer : FDA approval after EXCITE study

de novo Atherosclerosis v. Restenosis

Morphologically, *de novo* atherosclerosis is distinct from restenosis of peripheral arteries.

ATHEROSCLEROSIS –

*Complex, heterogeneous morphology with areas of compact calcium.*¹

RESTENOSIS—

Soft, aqueous neointimal hyperplasia tissue, with areas of thrombus.^{2,3}

- 1. Thompson and Towler (2012). Nature Reviews. 8: 529-543
- 2. Soor et al. (2008). Pathology. 40(4): 385-391
- 3. Amann, Kerstin (2008). Clin J Am Soc Nephrol. 3:1599-1605.

7 ©2014 Spectranetics. All Rights Reserved. Approved for External Distribution

UNIQUE COMPOSITION OF RESTENOTIC LESIONS

- Contributes to 60-80% of restenotic volume
- Determines the mechanical characteristics of the lesion
- Highly-compliant, soft and aqueous structure
 - Smooth muscle cells initially migrate and propagate into intima
 - Produce and recruit proteoglycans and collagen
 - Increased concentration of hydrophilic elements
 - Contribute considerably to water content and volume of lesion

Removal of ECM and its components is critical in the regression of the lesion

 Brodmann M et al. (2013). Cardiovasc Intervent Radiol. 36: 69-74 • Dieter RS and Larid JR. (2004). Endovasc Today. Oct: 36-38

 Kenagy RD et al. (2005). J Histochem Cytochem. 53(1): 131-140 Simon, Daniel

• Iijima R et al. (2004). Heart. 90: 1071-1072

©2014 Spectranetics. All Rights Reserved. Approved for External Distribution

TREATMENT IMPLICATIONS: ANGIOPLASTY

- Angioplasty is largely ineffective in restenotic NIH tissue.
- Balloon inflation squeezes water content out of aqueous ECM.
 - Upon deflation and removal, the lesion rehydrates within 100 mins
 - 'Acts like a sponge'
- Acute, immediate restenosis development

• Future role of Drug-Eluting Balloons + Debulking?

lijima R et al. (2004). Heart. 90: 1071-1072
 Singh S et al. (2013). Endovasc Today. Aug: 36-39
 Laird JR et al. (2010) Circ Cardiovasc Interv. 3: 267-276

Mauradin GSR et al. (2001). Radiology. 10: 288-297
Micardi A et al. (2013). Endovasc today. Aug: 50-53

©2014 Spectranetics. All Rights Reserved. Approved for External Distribution

TREATMENT IMPLICATIONS:

MECHANICAL ATHERECTOMY

- Mechanical Atherectomy relies upon differential hardness of lesion
 - Neointimal tissue is soft & aqueous
 - Cannot effectively cut/sand1-4
 - 'Spinning in mud'

- Clinically demonstrated to be less effective in restenotic lesions TLR 44% vs. 16% in de novo – Predictor of TLR at 1 year
- Risk embolization from displacement of soft NIH material⁴
 - Restenotic lesions have significantly higher risk (15x) of embolization
 - SilverHawk was associated with a significant increase in clinically significant distal embolization
 - 31-fold higher chance of distal embolization compared to PTA
 - Brodmann M et al. (2013). Cardiovasc Intervent Radiol. 36: 69-74
 3.
 Shammas NW et al. (2012) Cardiovasc Revasc Med. 13:224-227

 2.
 Shammas NW et al. (2013). 2013 TCT Abstracts: TCT-539.
 4.
 Shammas NW et al. (2008) J Endovasc Ther. 15: 270-276

 ©2014 Spectranetics. All Rights Reserved. Approved for External Distribution
 D023033-00
 052014

TREATMENT OF RESTENOSIS WITH LAS

- Laser highly absorptive in the unique aqueous morphology of NIH
- Extracellular matrix, smooth muscle cells, collagen and thrombus

- Photoablation <u>vaporizes</u> NIH material, debulking the restenosis
 - Without mechanical components that could tear or shear the easily fragmented structure
 - Reducing embolic potential

ATHERECTOMY DEVICE CHOICES

Mechanical Atherectomy

Laser Atherectomy

Directional

Laser

Reliant upon **DIFFERENTIAL HARDNESS** of lesion to cut, scrape or sand hardened, calcific atherosclerotic lesions

VAPORIZES the full-spectrum of PAD lesion morphologies

IMAGES: http://www.ev3.net/peripheral/us/plague-excisio http://www.medgadget.com/2009/12/pathway medicals peripheral que drill gets 510k classification.htm

©2014 Spectranetics. All Rights Reserved. Approved for External Distribution

MECHANICAL ATHERECTOMY DEVICES

Directional

Orbital

Rotational

Mechanical devices relying upon the differential hardness of plaques may not effectively remove soft, aqueous restenotic tissue

- Brodmann M et al. (2013). Cardiovasc Intervent Radiol. 36: 69-74. 1.
- 2. Shammas NW et al. (2013). 2013 TCT Abstracts: TCT-539. Shammas 3.

NW et al. (2012). Cardivasc Revasc Med. 13: 224-27.

IMAGES: http://www.ev3.net/peripheral/us/plaque-excision/turbohawk.htm, http://www.medgadget.com/2009/12/pathway...html

13 ©2014 Spectranetics. All Rights Reserved. Approved for External Distribution

MECHANICAL VS. LASER ATHERECTOMY

Effectiveness of Different Types of Atherectomy Devices for Treating Forms of Plaque Composition and Thrombus

Atherectomy Device	Thrombus	Soft Plaque	Mild Calcification	Moderate Calcification	Severe Calcification
Excimer Laser	+ +	+ +	+ +	+ +	+ +
Diamondback		+	+ +	+ +	+ +
TurboHawk		+ +	+ +	+ +	+
Jetstream	+ +	+ +	+ +	+	+
Phoenix		+ +	+ +	+	+

+ + Very Effective, + Effective, - Less Effective, - - Ineffecti

This table modified from Mustapha EVT 2011, and represents the opinions of the author based on personal experience and does not necessarily reflect data from clinical

http://evtoday.com/pdfs/EVT1011_feature_mustapha.pdf

MEETS MULTIDISCIPLINARY EUROPEAN ENDOVASCULAR THERAPY

LASER EXCIMER

- Debulking with fibrotic pulverisation
 - Reduce the residual ISR
 - May progress into long occlusion
 - Avoid immediat recoil we observe in TOSAKA III
 - Fibrotic residual lesion after LASER ablation is smoother and adequate for final remodelling

LASER EXCIMER EXCITE ISR

- RCT with 35 sites
- Randomization 2:1
- ISR- PTA Vs Laser + PTA
- 250 Pt included

LASER EXCIMER EXCITE ISR study design

Femoropopliteal artery in-stent restenosis (ISR)

LASER EXCIMER EXCITE ISR primary endpoints

Primary Safety Endpoint

- Major Adverse Events through 30 days:
 - Death
 - Unplanned Major Amputation
 - Target Vessel Revascularization (TLR)
- Primary Efficacy Endpoint
 - Freedom from clinically driven TLR at 6 months

LASER EXCIMER EXCITE ISR demographic data

MULTIDISCIPLINARY EUROPEA ENDOVASCULAR THERAP

LASER EXCIMER EXCITE ISR angiographic core lab assessment

	ELA + PTA	PTA Alone	
	(N=169)	(N=81)	P-value
Mean Lesion Length (cm)	19.6	19.3	0.85
Diameter Stenosis (%)	81.7%	83.5%	0.42
Popliteal Lesion	21.3%	23.4%	0.93
Total Occlusion	30.5%	36.8%	0.37
Calcium (Mod/Sev)	27.1%	9.1%	0.005
Stent Fracture			0.16
0	85.8%	95.8%	
1	5.0%	0.0%	
2	6.4%	4.2%	
3	2.1%	0.0%	
4	0.0%	0.0%	
5	0.7%	0.0%	

LASER EXCIMER EXCITE ISR procedural complications

LASER EXCIMER EXCITE ISR freedom from TLR

Freedom from TLR thru 6 months

LASER EXCIMER EXCITE ISR lesion length and TLR

LASER EXCIMER

- Case: lady 62 years
- SFA recanalisation 16 months ago
- ISR after 10 months
- ISR inflation using PTA 12 months
- New symptomatic ISR (90-95%) on duplex investigation

CONCLUSION

- Vessel preparation is the key for native vessels and moreover for ISR
- We have now dedicated tools
- Perfect protocol need to be clarified
 - INTACT RCT: PTA/DCB/Laser + DCB
 - 246 Pt 18 Months FU- clinical + economical evaluation
- Endovascular treatment is progressing also in terms of FU and durability