

Results from the ROADSTER & EU Experience

Prof. Dr. Isabelle Van Herzeele

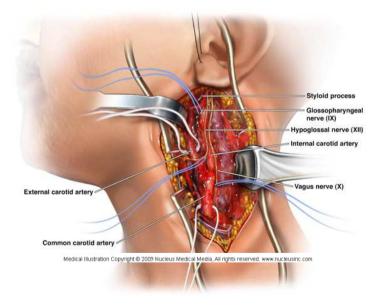
Dept of Thoracic and Vascular Surgery Ghent University Hospital, Ghent, Belgium

Disclosure

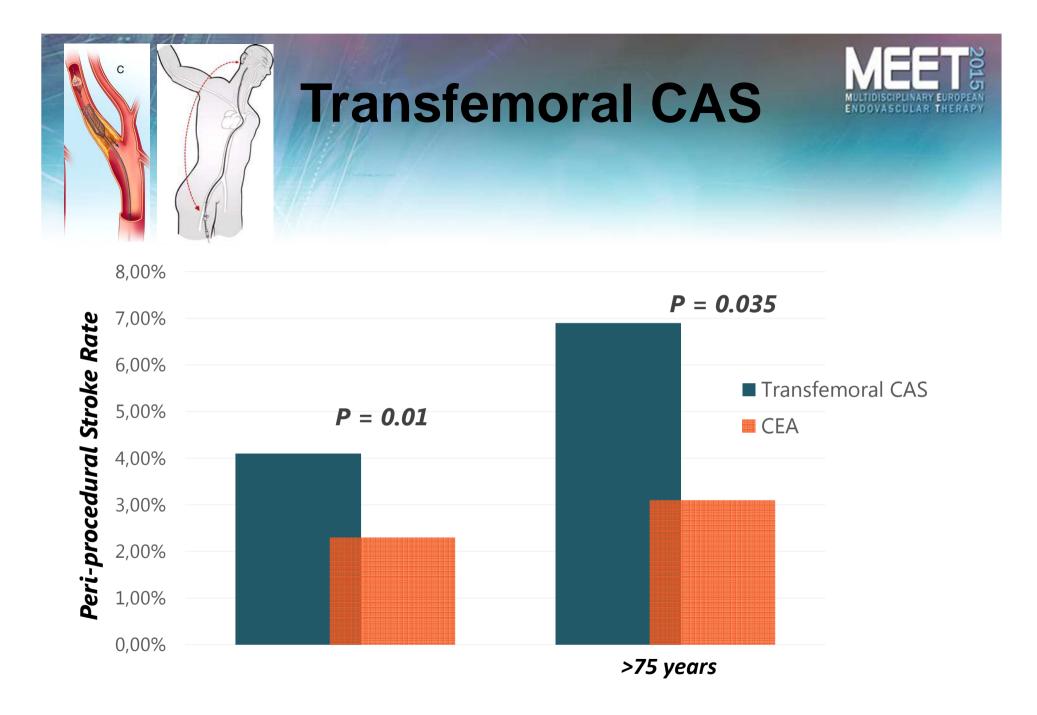
Isabelle Van Herzeele has the following potential conflicts of interest to report:

☑ Consulting

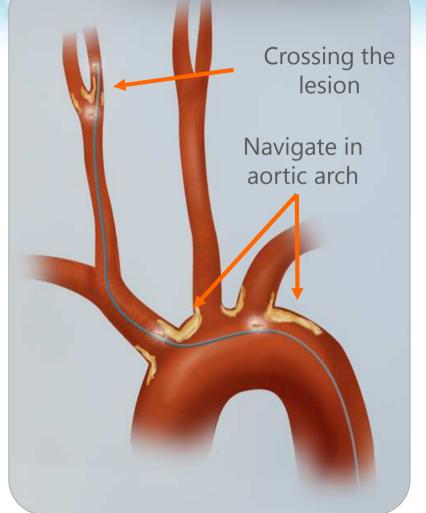
Silk Road Medical, Sunnyvale, CA, USA Medtronic Academia, Tolochenaz, Swiss


☑ Research Grant

Simbionix, Cleveland, Ohio, USA W.L. Gore & Associates, Inc., Flagstaff, USA Medtronic Academia, Tolochenaz, Swiss Silk Road Medical, Sunnyvale, CA, USA


Gold Standard: CEA

Low stroke and death rates Increased risk of MI and CNI


	CRI	n	
	CEA	CAS	р
Myocardial Infarction ¹	2.3%	1.1%	0.03
Cranial Nerve Injury ¹	4.8 %	0.3%	<0.0001
Cranial Nerve Injury unresolved at 6 months ²	2.0%	0.0%	

¹N Engl J Med 2010;363:11-23 ²FDA Panel Meeting, January 25, 2011

Causes of Transfemoral Peri-procedural Stroke

Traditional Transfemoral CAS may cause embolic risk by

- 1. Manipulation of catheter in aortic arch
 - 18% Non-Ipsilateral stroke rate in CAPTURE Study*
- 2. Crossing lesion before neuroprotection in place
- 3. Inadequate neuroprotection
 - Misaligned filter
 - Inadequate manual aspiration of emboli

1. Ann Surg 2007;246: 551-558.

Aortic Arch Is Hostile Territory

The incidence of microemboli to the brain is less with endarterectomy than with percutaneous revascularization with distal filters or flow reversal

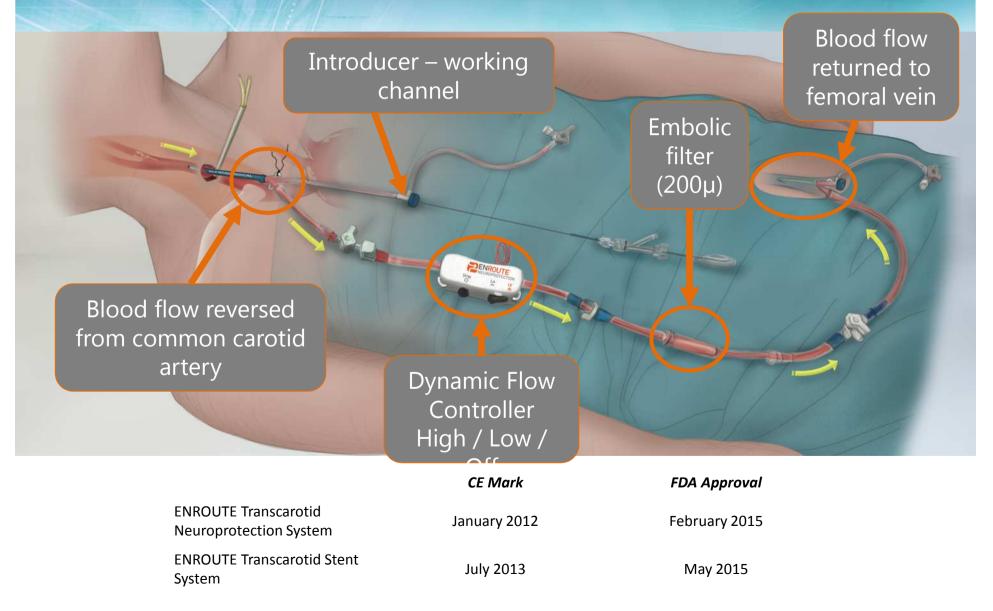
Procedure	Ν	Incidence MES	Procedural Stage	
Carotid Endarterectomy	15	15.3 (±22)	Post-procedure	
Filter protected CAS	20	319.3 (±110.3)	During protection	
Flow reversal CAS	7	184.2 (±110.5)	Pre-protection	

Gupta N et al. J Vasc Surg. 2011;53:316-322

Study	Procedure	Embolic Protection	# subjects	% w/ New DWI Lesions
ICSS ¹	Transfemoral CAS	Distal filter (various)	51	73
ICSS ¹	CEA	Clamp, backbleed	107	17
PROFI ²	Transfemoral CAS	Distal filter (Emboshield)	31	87
Leal ⁴	Transfemoral	Distal Filter (FilterWire)	33	33
PROFI ²	Transfemoral CAS	Proximal occlusion (MoMa)	31	45
DESERVE ⁵	Transfemoral CAS	Proximal occlusion (MoMa)	127	26
PROOF ³	Transervical CAS	High-flow rate flow reversal	48	16.7
Leal ⁴	Transervical CAS	Flow Reversal	31	12.9

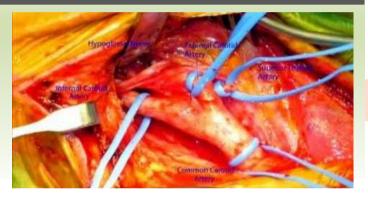
1 Lancet Neurol. 2010 Apr;9(4):353-62

2. J Am Coll Cardiol. 2012;59:1383-89


3. JVS 2011;54:1317-23

4. JVS 2012 ;56:1585-90

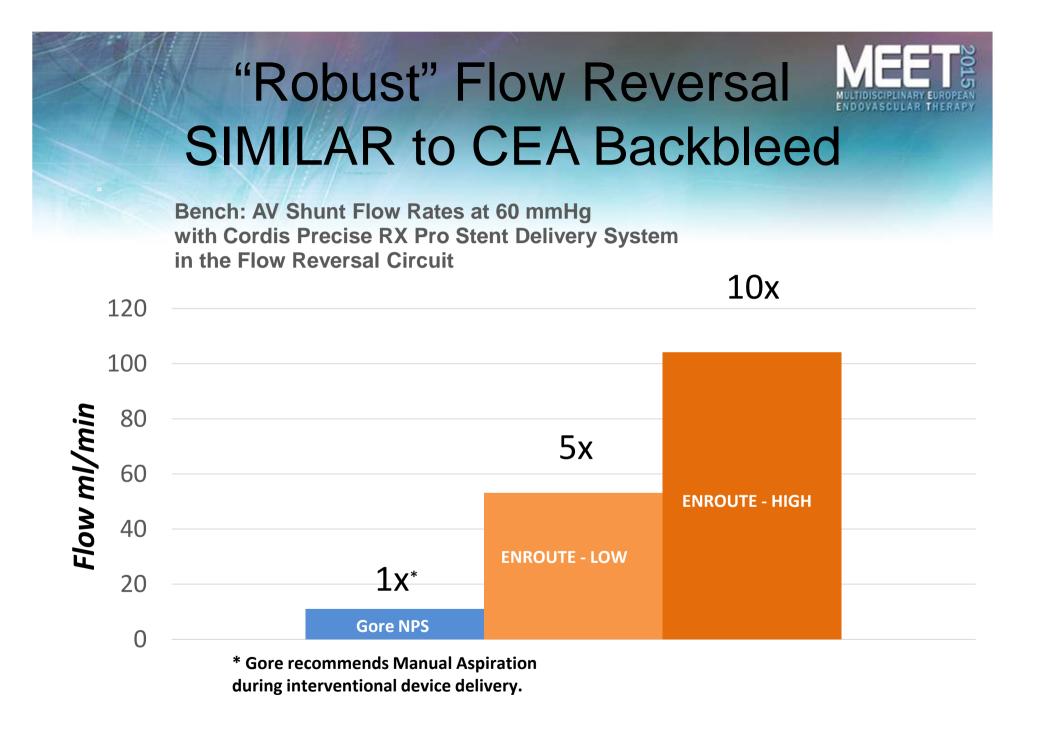
5. Int J Cardiol 2014;15: 174(2):382-3


Enroute Transcarotid and Neuroprotection System

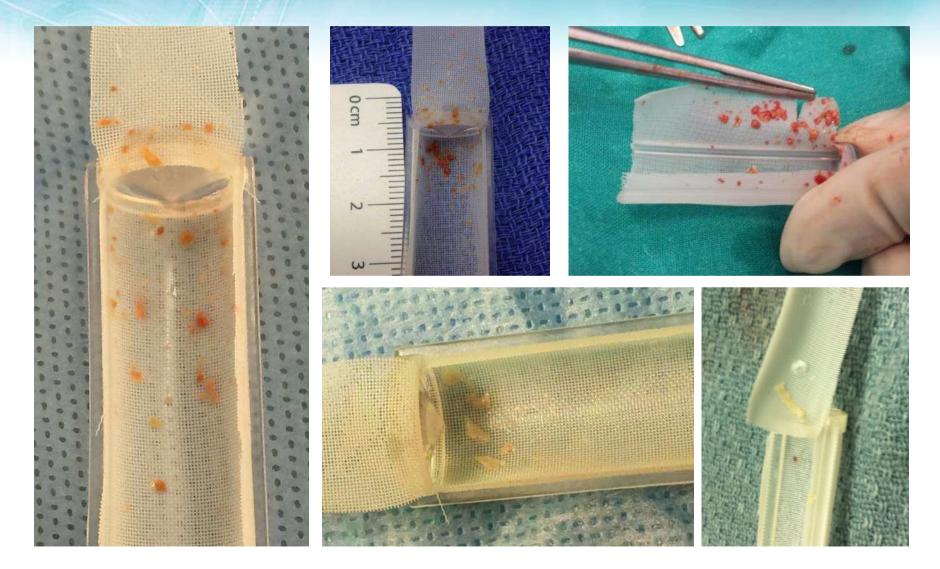
How Can We Achieve CEA-Like Main Neuroprotection Less Invasively?

Direct Carotid Access CCA Clamp & Loop Control

Backbleed to Clear Debris



Direct Carotid Access (avoid arch) CCA Rummel Loop Control


Backbleed to Clear Debris

PROOF = IN THE FILTER Macro & Micro emboli in ENROUTE® NPS FILTERS

Transcarotid Artery Revascularization and Stroke Reduction

	Silk Road Clinical Studies				
	PROOF	TESLA	ROADSTER	ENROUTE DW-MRI study	
Study type	First In Man EU	Multicenter EU Post-Market Registry	US Pivotal IDE	European registry	
Number of Patients	75	58	208	30	
Profile	All-comers	All-comers	High Surgical Risk: Symptomatic & Asymptomatic	Symptomatic <6 weeks	
Status	Complete	Complete	Complete	Enrolling	

THE PROOF STUDY: **FIRST IN MAN**

Prof Ralf Kolvenbach, Dusseldorf, Germany

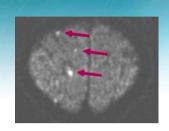
Safety Results^{1,2}

Primary Endpoint: Major stroke, MI, and death through 30 days

0/71 (0%)

Minor stroke

1/71(1.3%)Minor contralateral stroke adjudicated as not device or procedure-related


1. J Vasc Surg 2011;54:1317-23

2. Kolvenbach, Ralf, MD PhD. "Transcervical Carotid Revascularization with Flow Reversal Neuroprotection: Final Results from the Silk Road Medical Neuroprotection System: First-In-Man PROOF Study." VEITH Meeting, Nov 2012

The PROOF Study

Micro-Emboli Measurement

DW-MRI Studies – A More Sensitive Marker

PROFI1Transfemoral CASDistal filter (Emboshield)3187%ICSS2Transfemoral CASDistal filter (various)5173%PROFI1Transfemoral CASProximal occlusion (MoMA)3145%ICSS2CEAClamp, backbleed10717%	Study	Procedure	Embolic Protection	Patients	% w/ New DWI Lesions
PROFI ¹ Transfemoral CAS Proximal occlusion 31 45%	PROFI ¹	Transfemoral CAS	Distal filter (Emboshield)	31	87%
PROFI ¹ Transfemoral CAS (MoMA) 31 45%	ICSS ²	Transfemoral CAS	Distal filter (various)	51	73%
ICSS ² CEA Clamp, backbleed 107 17%	PROFI ¹	Transfemoral CAS		31	45%
	ICSS ²	CEA	Clamp, backbleed	107	17%
PROOF ³ Silk Road Transcarotid Access, w/ Flow Reversal 56 19%	PROOF ³	Silk Road		56	19%

1 J Am Coll Cardiol. 2012 Jan 19.

2 Lancet Neurol. 2010 Apr;9(4):353-62

3 Kolvenbach, Ralf, MD PhD. " Transcervical Carotid Revascularization with Flow Reversal Neuroprotection: Final Results from the Silk Road Medical Neuroprotection System: First-In-Man PROOF Study." VEITH Meeting, Nov 2012

Tesla: Multi-Center EU registry 0% - DAY 0 STROKE

TESLA - DEMOGRAPHICS & RESULTS	Value (n=58)
Neurological Status	
Symptomatic	38 (65.5%)
Asymptomatic	20 (34.5%)
Outcomes	
Procedural Success	57 (98.3%)
Major Adverse Event Rate – Day O (Stroke, Death and Myocardial Infarction)	0 (0%)
Cranial Nerve Injury	0 (0%)

ROADSTER Study

- DESIGN: IDE study with OPC of 11% S/D/MI
- OBJECTIVE: Evaluate safety and efficacy of CAS with ENROUTE Transcarotid Neuroprotection System
- **INDEPENDENT REVIEW:** CEC, DSMB, Core labs (angiography, duplex ultrasound, cardiology)
- PRIMARY ENDPOINT
 - Composite of S/D/MI at 30-days postprocedure
- SECONDARY ENDPOINTS
 - Cranial nerve injury (CNI)
 - Stroke and death (S/D)
 - Procedural and technical success

November 2012- July 2014 208 Patients, 18 Sites **High Surgical Risk** Symptomatic, ≥ 50% Stenosis Asymptomatic, ≥ 70% Stenosis N= 67 Lead- In N= 141 Pivotal **30 Day Follow Up**

ROADSTER Patient Population

Physiologic HSR Inclusion

- Severe cardiac disease; severe COPD; chronic renal insufficiency
- Permanent contralateral CNI
- Age ≥75

Exclusion: Common to CAS

- Atrial fibrillation
- Recent valve or MI
- Evolving stroke; neuro disorders
- Occlusion; ostial CCA or intracranial stenosis; string sign; previous stent

Anatomic HSR Inclusion

- Contralateral occlusion; bilateral or high or tandem stenoses
- Restenosis post CEA
- Hostile neck
 - Irradiation
 - Radical neck dissection
 - Cervical spine immobility

Exclusion: Transcarotid

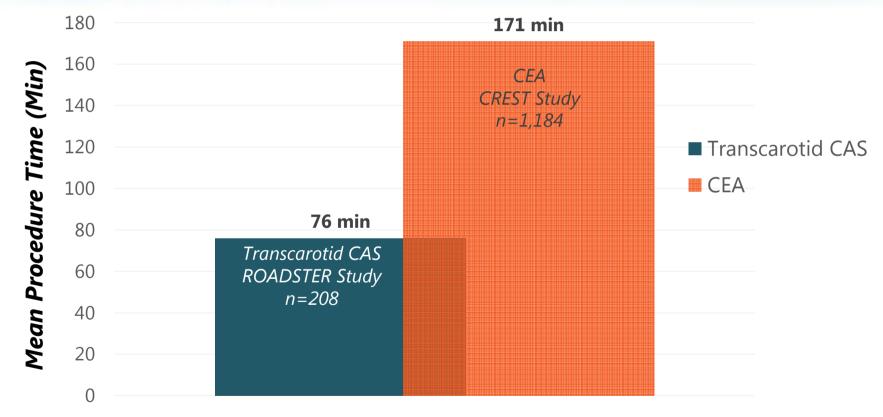
- CCA disease at entry site
- <5cm clavicle to bifurcation

ROADSTER Study Baseline Characteristics

High Surgical Risk	Pivotal Group (N=141)
Age	72.9 ±9 (40,90)
Age ≥75	47%
Age ≥ 80	28%
Female	35%
Symptomatic	26%
Physiologic Risk Factors	56%
Anatomic Risk Factors	
Hostile Neck	16%
Restenosis post CEA	21%
Physiologic & Anatomic Risk Factors	40%

ROADSTER Study Outcomes Intention to Treat & Per Protocol Groups

High Surgical Risk	Pivotal Group, ITT (N=141)			Group, PP =136)
S/D/MI*	5	3.5%	4	2.9%
Major Stroke	0	0%	0	0%
Minor Stroke	2	1.4%	1	0.7%
Death	2	1.4%	2	1.5%
MI	1	0.7%	1	0.7%
Stroke & Death	4	2.8%	3	2.2%
Cranial Nerve Injury (CNI)	1	0.7%	1	0.7%
CNI Unresolved at 6 Mo	0	0%	0	0%

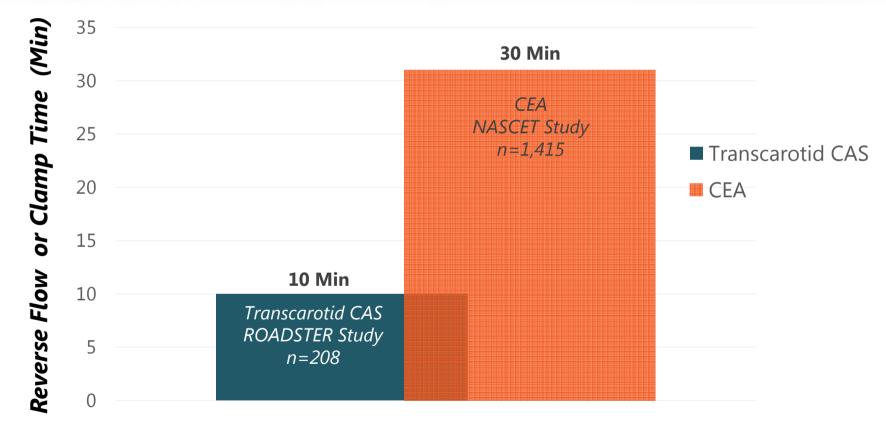


ROADSTER Study Subgroup Outcomes

High Surgical Risk Pivotal Intention to Treat	Age ≥ 75	Symptomatic
Ν	N=66 (47%)	N=36 (26%)
S/D/MI	3 (4.5%)	1 (2.8%)
Major Stroke	0%	0%
Minor Stroke	0%	0%
Death	3.0%	2.8%
MI	1.5%	0%
Stroke & Death	3.0%	2.8%

Physician-Friendly Silk Road Procedure Time <1/2 That Of CEA

ROADSTER vs. CREST


1. ROADSTER Presentation – Late Breaking Trials, VIVA 2014, C. Kwolek, MD

2. Stroke. 2012;43:00-00.

Patient-Friendly Reverse Flow Time 1/3 That of CEA Clamp Time

ROADSTER vs. NASCET

1. ROADSTER Presentation – Late Breaking Trials, VIVA 2014, C. Kwolek, MD 2. Stroke. 1999;30:1751-1758

ROADSTER Study Summary

- The ROADSTER study met the primary endpoint S/D/MI (3.5%)
- Stroke Rates are CEA- LIKE

	Roadster	CREST CEA
 All stroke rate in patients PP 	0.7%	2,3%
- Stroke rate in symptomatic patie	ents 0%	3,2%
 Stroke rate in patients ≥75 yrs. 	0%	3,1%
 Stroke rate in women 	0%	2,2 %

- Mean Procedure Time <1/2 of CREST CEA
 Flow reversal time < 1/3 of NASCET CEA clamp time
- No permanent Cranial Nerve Injuries

FDA cleared the ENROUTE Transcarotid NPS

- Symptomatic carotid artery stenosis < 6 weeks

- TIA, amaurosis fugax, minor, non-disabling stroke
- mRS ≤ 2, NIH<4
- Primary endpoint: Incidence of new white lesions by DW-MRI post procedure


	Preop	Periop	24H	48-60H	1 M
Clinical neurological examination	•		•		•
DW-MRI	~			~	~
TCD	v	~			
Duplex carotid arteries	~			~	~

TransCarotid Artery Revascularization Procedure Experience in EU 322 Cases – 30 d Stroke/Death rate 1.5%

Study	F/U	Status	Total Enrollment
PROOF	30-DAY	CLOSED	75
LOTUS	30-DAY	CLOSED	12
PROOF EC	30-DAY	CLOSED	6
TESLA	30-DAY	CLOSED	75
F-1 (Filter Debris)	30-DAY	CLOSED	24
ROADSTER	30-DAY	CLOSED	29*
MINI (KOBI)	ACUTE	ENROLLING	39
DW-MRI	30-DAY	ENROLLING	9
Other	ACUTE	COMMERCIAL	53
		TOTAL	322

Endpoints	SILK ROAD PROCEDURE
Stroke/Death (30-day)	5/322 (1.5%)*
Intraprocedural	0/322 (0.0%)
CNI (periprocedural)	2/322 (0.6%)

Conclusion

Courtesy K Matthias

- Transcarotid CAS with dynamic flow reversal may improve the less than optimal CAS results.
- CEA-trained vascular surgeons and CAS-trained physicians rapidly adopt the *hybrid* technique
- Low stroke, death and MI rate even in *elderly* and in *symptomatic* cases

Carotid Management Cognitive and Technical Skills

- Patient selection!
- Probing of CCA in aortic arch = atraumatic or skipped
- Tip of sheath in CCA + tip of 0.014 wire always in view
- Use adequate devices (in difficult anatomy)
- Be patient when crossing the lesion
- Place stent properly
- Monitor BP, HR, ACT...
- Use intelligence, not force!

Courtesy of K Matthias