

Arterial status, angiosome, arterial calcifications: it is possible to plan treatment at BTK level ?

Mauro Gargiulo

Vascular Surgery, University of Bologna Policlinico S.Orsola-Malpighi, Bologna, Italy *Chief: Prof. Andrea Stella*

Arterial status, angiosome, arterial calcifications: Ministry it is possible to plan treatment at BTK level ?

Disclosure

Speaker name: Mauro Gargiulo

I have the following potential conflicts of interest to report:

- **X** Consulting: William Cook Europe, Medtronic Vascular Inc.
- ☐ Employment in industry
- ☐ Shareholder in a healthcare company
- □ Owner of a healthcare company
- \Box Other(s)

I do not have any potential conflict of interest

Tibial Artery Angioplasty with Uncoated Balloon in CLI

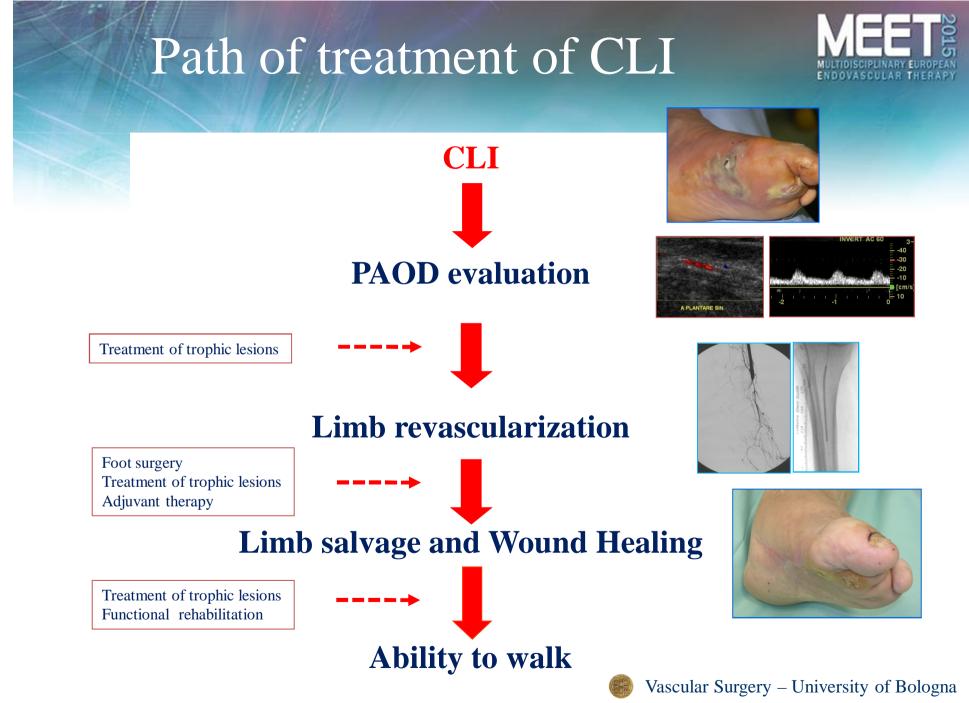
	n.	%	1
Limbs	249	100	
 Fontaine Stage 			
III	20	8	
IV	229	92	1

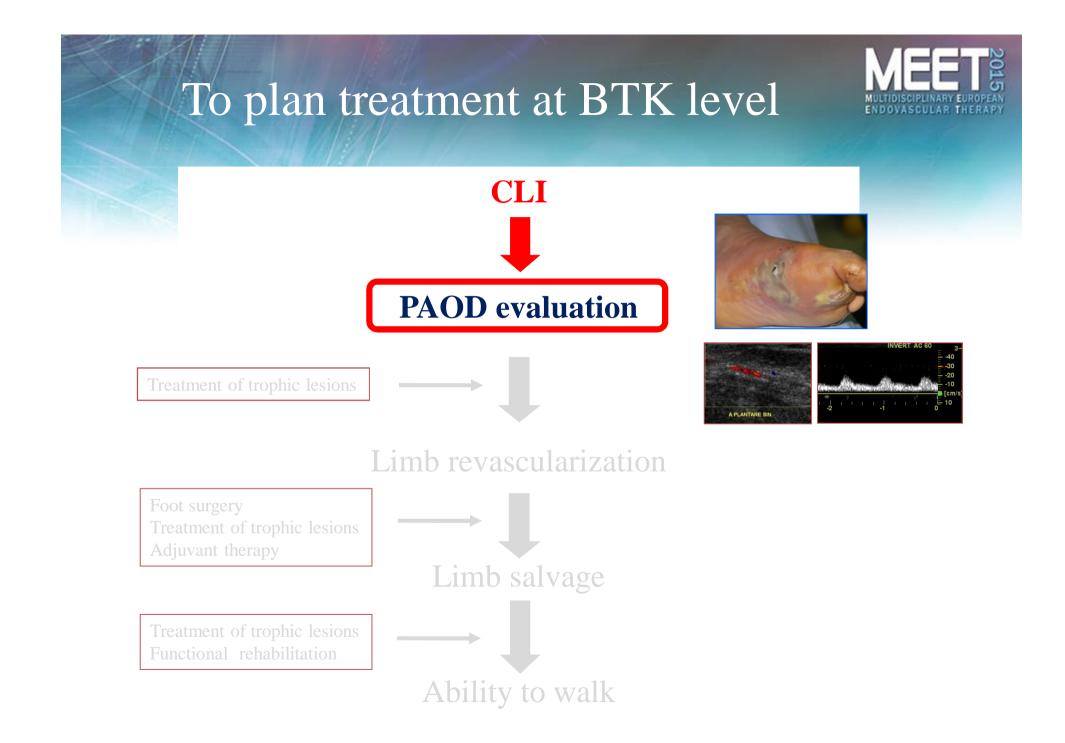
Tibial Artery Angioplasty with Uncoated Balloon in CLI

	n.	%	OR
Limbs	249	100	- 71
 Fontaine Stage 			
III	20	8	
IV	229	92	

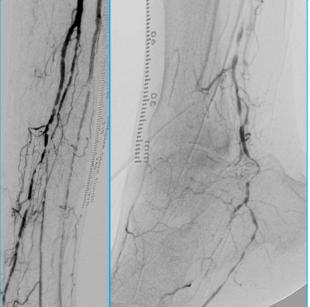
Armstrong DG et al Diabetes Care 1998;21:855-859

Grade Stage	0	Ι	Π	Ш
A	Pre or post- ulcerative lesion	Non-infected, non-ischemic, superficial ulceration	Non-infected, non-ischemic, ulcer that penetrates to capsule or bone	Non-infected, non-ischemic, ulcer that penetrates to bone or deep
В	With infection	With infection	With infection	With infection
С	Without infection, With ischemia	Without infection, With ischemia	Without infection, With ischemia	Without infection, With ischemia
D	With infection, With ischemia	With infection, With ischemia	With infection, With ischemia	With infection, With ischemia

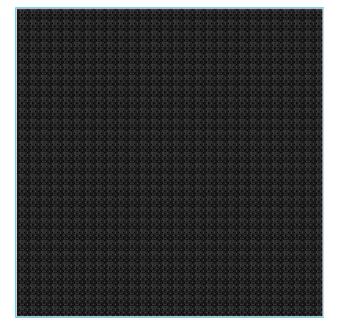

Validation of a diabetic wound classification system


Tibial Artery Angioplasty with Uncoated Balloon in CLI

	n.	%	
Limbs	249	100	
 Fontaine Stage 			
III	20	8	
IV	229	92	
• TUC Grade			
< III	53	21.3	
III	176	70.7	
TUC Stage			
С	70	28.1	
D	159	73.9	


To plan treatment at BTK level – PAOD evaluation

Clinical evaluation Fontaine stage III / IV Neuro-ischemic ulcers . TWC . angiosome



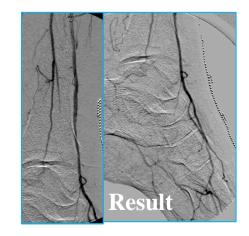
To plan treatment at BTK level – PAOD evaluation

Clinical evaluation Fontaine stage III / IV Neuro-ischemic ulcers . TWC . angiosome

• Arterial disease evaluation

BTK revascularization – Fontaine Stage III

Primary end-point

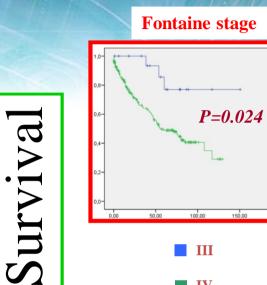

Re-establishment of pulsatile, straight-line **flow to the foot**

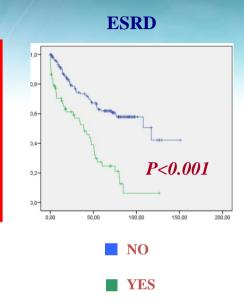
- Remove ischemic pain
- Prevent limb loss
- Improve quality of life
- Prolong survival

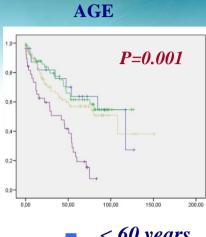
BTK revascularization – Fontaine Stage IV

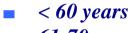
Ischemic Foot – revascularization according the Angiosome-Model

Primary end point


Re-establishment of pulsatile, straight-line **flow to the angiosome**


- Healing of (neuro)ischemic ulcers
- Regression of ischemic pain
- Limb salvage
- Improve quality of life
- Prolong survival


Tibial Artery Angioplasty with Uncoated Balloon in CLI

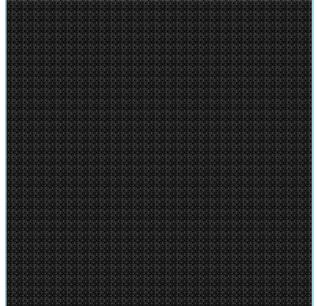


IV

- 61-70 years
- 71-80 years
- > 80 years

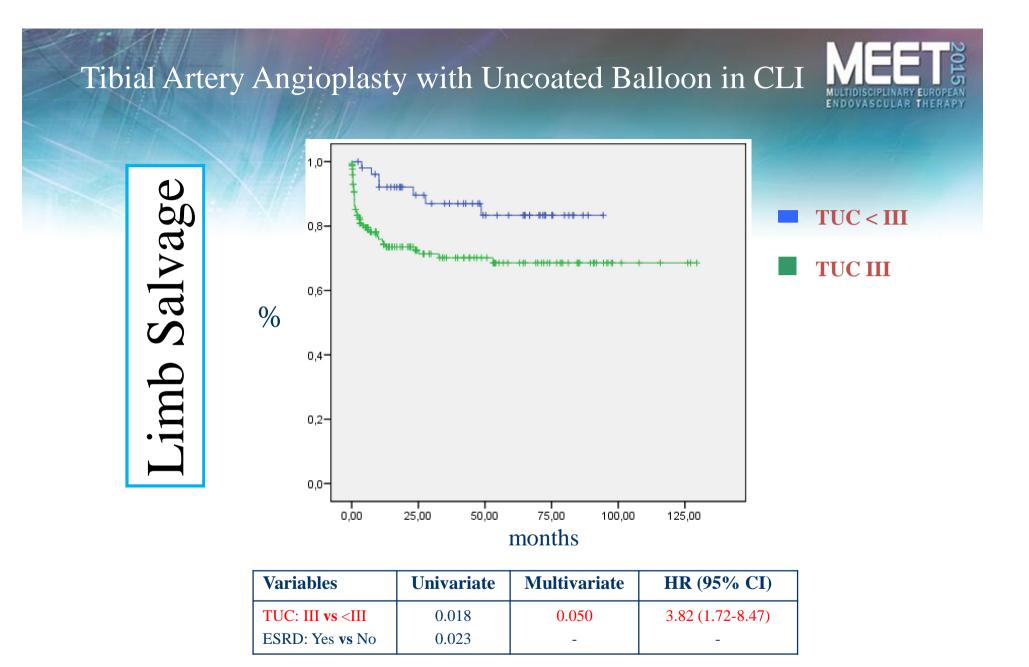
Variables	Univariate	Multivariate	HR (95% CI)
Fontaine: IV vs III	0.017	0.024	2.63 (0.83-8.36)
ESRD: Yes vs No	< 0.001	< 0.001	3.41 (2.28-5.1)
Age (years)	0.001	0.001	10.42 (10.18-10.67)
> 80 vs			
- ≤ 60			
- 61-70			
- 71-80			

To plan treatment at BTK level – PAOD evaluation



Clinical evaluation

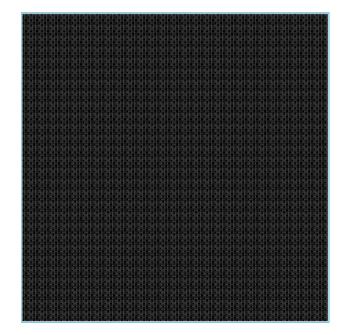
 Fontaine stage III / IV
 Neuro-ischemic ulcers
 . TWC
 . angiosome



Validation of a diabetic wound classification system Armstrong DG et al Diabetes Care 1998;21:855-859

Aulcerative lesionnon-ischemic, superficial ulcerationnon-ischemic, ulcer that penetrates to capsule or bonenon-ischemi ulcer that penetrates to b or deepBWith infection 12.5%With infection 8.5%With infection 28.6%With infection 92%CWithout infection, With ischemia 25%Without infection, 20%Without infection, With ischemia 25%With infection, 25%With infection, With infection,	Grade Stage	0	Ι	II	III
BWith infection 12.5%With infection 8.5%With infection 28.6%With infection 	А	^	non-ischemic, superficial	non-ischemic, ulcer that penetrates to	penetrates to bone
B12.5%8.5%28.6%92%CWithout infection, With ischemiaWithout infection, With ischemiaWithout infection, With ischemiaWithout infection, With ischemiaCWithout infection, 25%Without infection, 25%With ischemia 25%With ischemia 100%BImage: 12.5%20%28.6%92%CWith ischemia 25%With ischemia 		0%	0%	0%	0%
C12.5%8.5%28.6%92%CWithout infection, With ischemiaWithout infection, With ischemiaWithout infection, With ischemiaWithout infect With ischemia100%With infection,With infection,With infection,With infection,With infection,With infection,With infection,With infection,	D	With infection	With infection	With infection	With infection
CWith ischemia 25%With ischemia 20%With ischemia 25%With ischemia 100%Image: With infection, With infect	D	12.5%	8.5%	28.6%	92%
25%20%25%100%With infection,With infection,With infection,With infection		Without infection,	Without infection,	Without infection,	Without infection,
With infection,With infection,With infection,With infection,With infection,With infection,	C	With ischemia	With ischemia	With ischemia	With ischemia
		25%	20%	25%	100%
		· · · · · · · · · · · · · · · · · · ·			With infection,
DWith ischemiaWith ischemiaWith ischemia50%50%100%100%	D				With ischemia

The amputation risk is presented as %


To plan treatment at BTK level – PAOD evaluation

Clinical evaluation

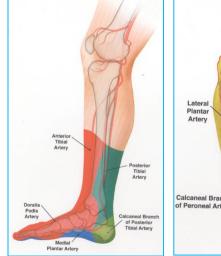
 Fontaine stage III / IV
 Neuro-ischemic ulcers
 . TWC
 . angiosome

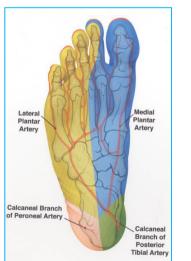
• Arterial disease evaluation

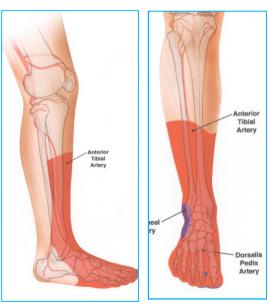
Angiosome of the leg: MEE Anatomic study and clinical implications

Taylor GI, Pan WR. Plast Reconstr Surg 1998;102-599.

Ankle/Foot: 6 angiosomes


Posterior Tibial Artery (# 3)

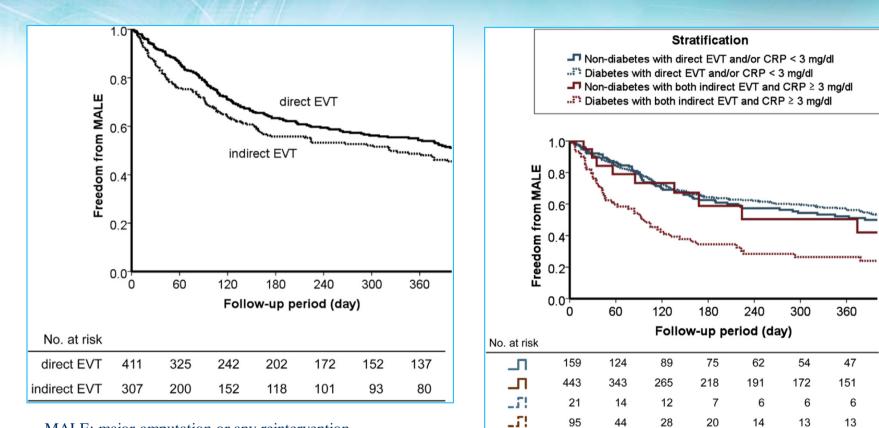

- . Calcanear artery
- . Medial plantar artery
- . Lateral plantar artery


Anterior Tibial Artery (#1) . Dorsalis pedis artery

Peroneal Artery (#2)

- . Calcanear artery
- . Anterior perforating artery

Systematic Review and Meta-analysis of Direct versus Indirect ME Angiosomal Revascularisation of infrapopliteal arteries


Wound healing

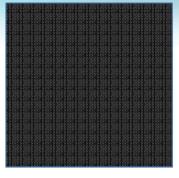
	Favour		IF			Odds Ratio	Odds Ratio		Favours	5 DR	IR			Odds Ratio	Odds Ratio
turbe on Subgroup	Events	Total	Event	s Tot	al Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	Study or Subgroup	Events	Total	Events	Tota	Weight	M-H, Random, 95% C	M-H, Random, 9
.1.1 All studies								1.1.4 Larger studies							
cin	14	44	2	3 3	9 11.5%	0.32 [0.13, 0.80]		Alexandrescu	14	85	8	17	10.8%	0.22 [0.07, 0.67]	
lexandrescu	14	85	1	B 1	7 7.6%	0.22 [0.07, 0.67]		Fossaceca	80	167	23	34	21.9%	0.44 [0.20, 0.96]	
zuma	1	48		3 4	8 1.8%	0.32 [0.03, 3.18]		Kret	37	54	41	52	17.2%	0.58 [0.24, 1.41]	
ossaceca	80	167	2	3 3	4 15.4%	0.44 [0.20, 0.96]		Rashid	9	66	16	75	16.7%	0.58 [0.24, 1.42]	
abra	12	39		5 1	5 5.8%	0.89 [0.25, 3.17]		Soderstrom	26	84	45	84	33.5%	0.39 [0.21, 0.73]	
ret	37	54	4	1 5	2 12.1%	0.58 [0.24, 1.41]		Subtotal (95% CI)		456		262	100.0%	0.43 [0.30, 0.62]	•
eville	2	22		8 2	1 3.2%	0.16 [0.03, 0.89]		Total events	166		133				
sawa	1	29		5 2	2 1.9%	0.10 [0.01, 0.86]		Heterogeneity: Tau ² =				= 0.67)	; I² = 0%		
ashid	9	66	10	8 7	5 11.7%	0.58 [0.24, 1.42]		Test for overall effect:	Z = 4.52 (P < 0.00	001)				
oderstrom	26	84	4	5 8	4 23.5%	0.39 [0.21, 0.73]									
alera	4	45		8 3	1 5.5%	0.28 [0.08, 1.03]		1.1.5 Propensity mat	ched grou						10000
ubtotal (95% CI)		683		43	8 100.0%	0.40 [0.29, 0.54]	•	Azuma	1	48	3	48	7.0%	0.32 [0.03, 3.18]	
otal events	200		18	8				Soderstrom Subtotal (95% CI)	26	84 132	45	84	93.0% 100.0%	0.39 [0.21, 0.73]	
eterogeneity: Tau ² =	0.00: Chi2	= 7.29.	df = 10	(P = 0)	70); l ² = 09	6			07	132	48	132	100.0%	0.38 [0.21, 0.70]	
est for overall effect:						-		Total events Heterogeneity: Tau ² =	27	- 0.02		- 0.97)	12 - 00/		
	,											= 0.87)	; I* = 0%		
1.2 Endovascular n	evascular	isation						Test for overall effect:	2 = 3.09 (P = 0.00	2)				
in	14	44	2	3 3	9 19.3%	0.32 [0.13, 0.80]		1.1.6 NO≥6							
exandrescu	14	85		8 1		0.22 [0.07, 0.67]		Azuma	1	48	3	48	2.7%	0.32 [0.03, 3.18]	
ossaceca	80	167	2	5		0.44 [0.20, 0.96]		Fossaceca	80	167	23	34	23.9%	0.44 [0.20, 0.96]	
sawa	1	29		5 2		0.10 [0.01, 0.86]		Kret	37	54	41	52		0.58 [0.24, 1.41]	
oderstrom	26	84	4			0.39 [0.21, 0.73]		Rashid	9	66	16	75		0.58 [0.24, 1.42]	
ubtotal (95% CI)	20	409		19		0.34 [0.23, 0.51]	•	Soderstrom	26	84	45	84	36.5%	0.39 [0.21, 0.73]	
otal events	135		10				500 • 102	Subtotal (95% CI)		419		293	100.0%	0.46 [0.32, 0.68]	•
aterogeneity: Tau ² =		= 2.44			5)-12 = 0%			Total events	153		128				
est for overall effect:				- 0.0	5),1 - 0.0			Heterogeneity: Tau ² =	0.00; Chi2	= 0.93,	df = 4 (P	= 0.92)	$ ^2 = 0\%$		
Still Overall ellect.	2 - 5.20 (- 0.00	001)					Test for overall effect:	Z = 3.97 (P < 0.00	01)				
1.3 Bypass revascu	larisation							1.1.7 One year follow							
uma	1	48		3 4	8 4.4%	0.32 [0.03, 3.18]		Acin	14	44	23	39	16.6%	0.32 [0.13, 0.80]	_
bra	12	39		5 1	5 14.4%	0.89 [0.25, 3.17]		Azuma	14	44	23	48	2.5%	0.32 [0.03, 3.18]	
et	37	54	4			0.58 [0.24, 1.41]		Fossaceca	80	167	23	34	22.2%	0.44 [0.20, 0.96]	
ville	2	22		8 2		0.16 [0.03, 0.89]		Rashid	9	66	16	75	16.9%	0.58 [0.24, 1.42]	
shid	9	66	10	-	5 29.2%	0.58 [0.24, 1.42]		Soderstrom	26	84	45	84	33.9%	0.39 [0.21, 0.73]	
lera	4	45		8 3		0.28 [0.08, 1.03]		Valera	4	45	8	31	7.9%	0.28 [0.08, 1.03]	
ibtotal (95% CI)		274	· ·		2 100.0%	0.49 [0.30, 0.80]	•	Subtotal (95% CI)	-	454	0		100.0%	0.40 [0.28, 0.58]	•
tal events	65		8				•	Total events	134		118				873
eterogeneity: Tau ² =		= 3.60			$1) \cdot 1^2 = 0.94$			Heterogeneity: Tau ² =		= 1.27.		= 0.94)	; l ² = 0%		
st for overall effect:				0.0	1), 1" = 076			Test for overall effect:							
at for overall effect.	2 - 2.00 (- 0.00	, m)			H	a sha sha sha sha							_	
						0.	1 0.1 1 10 100								
							Favours DR avours IR								01 0.1 1 10 Favours DR avours IR
								Test for subgroup diffe	erences' C	$h^2 = 1.8$	3 df = 6	P = 0.9	(3) $I^2 = 0\%$		avours Dr. avours IR

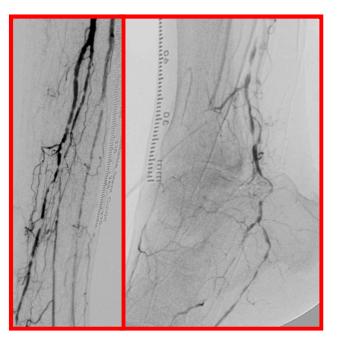
Worse Limb Prognosis for Indirect versus Direct Endovascular Revascularization only in Patients with Critical Limb Ischemia Complicated with Wound Infection and Diabetes Mellitus

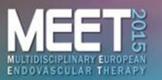
Eur J Vasc Endovasc Surg 2013, 46(5): 575-82

MALE: major amputation or any reintervention

Conclusion: indirect EVT in patients with Diabetes and Wound Infection had a significant association with MALE


To plan treatment at BTK level – PAOD evaluation




Clinical evaluation

 Fontaine stage III / IV
 Neuro-ischemic ulcers
 . TWC
 . angiosome

• Arterial disease evaluation

Imaging - End-points

- To define the presence of pathology
- To define the extension of pathology
- Run in, Run off (morphology and haemodynamic aspects)

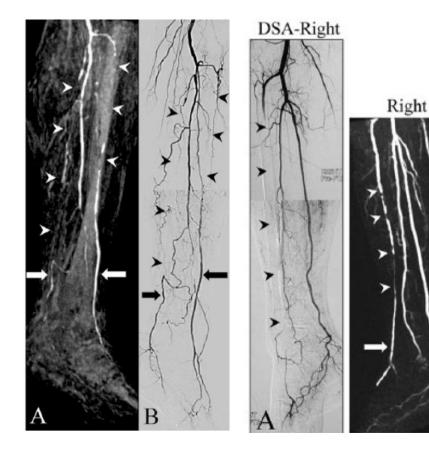
Imaging of femoro-popliteal-tibial axis Imaging of foot arteries

Imaging

- Doppler CW, ABI
- Duplex
- TcPO2
- Angio MRI, Angio CT
- Angiography

Imaging

- Doppler CW, ABI
- Duplex
- TcPO2
- Angio MRI, Angio CT
- Angiography



Imaging – MR Angiography

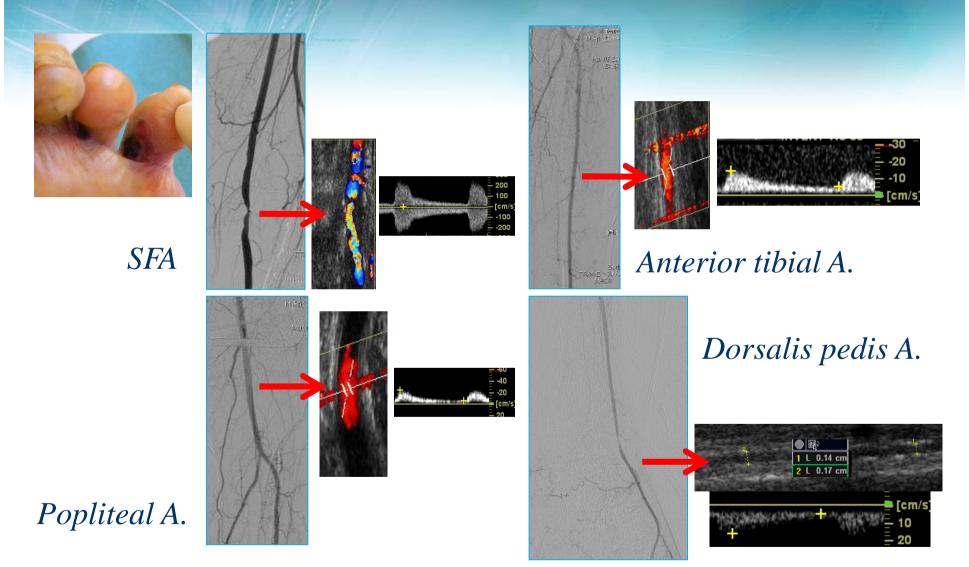
Lapeyre M et al Am J Roentgenol 2005; 185: 1641-1650
Diehm N et al Invest Radiol 2007; 42: 467-476

- DSA may fail to correctly depict tibial artery especially distal to long-segment occlusions.

- Late contrast enhancement of distal runoff vessels with retrograde filling via collaterals may also not be visible on DSA images.

> YQ Zhu et al. J Endovasc Ther 2015;22:243-251 N. Diehm J Endovasc Ther 2015: 22; 252-253

Imaging


- Doppler CW, ABI
- Duplex
- TcPO2
- Angio MRI, Angio CT
- Angiography

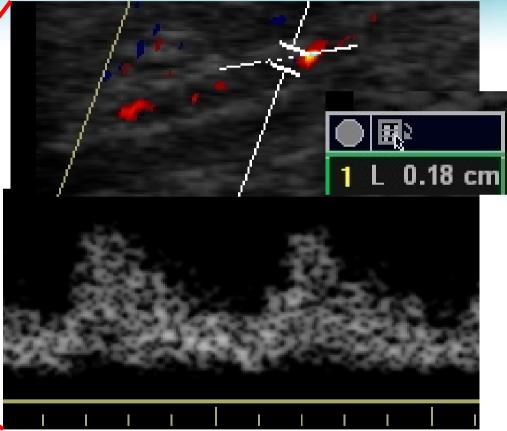
Tibial arteries disease: Ultrasound evaluation

DUS assessment of tibial arteries in patients with arterial disease:

a Systematic Review

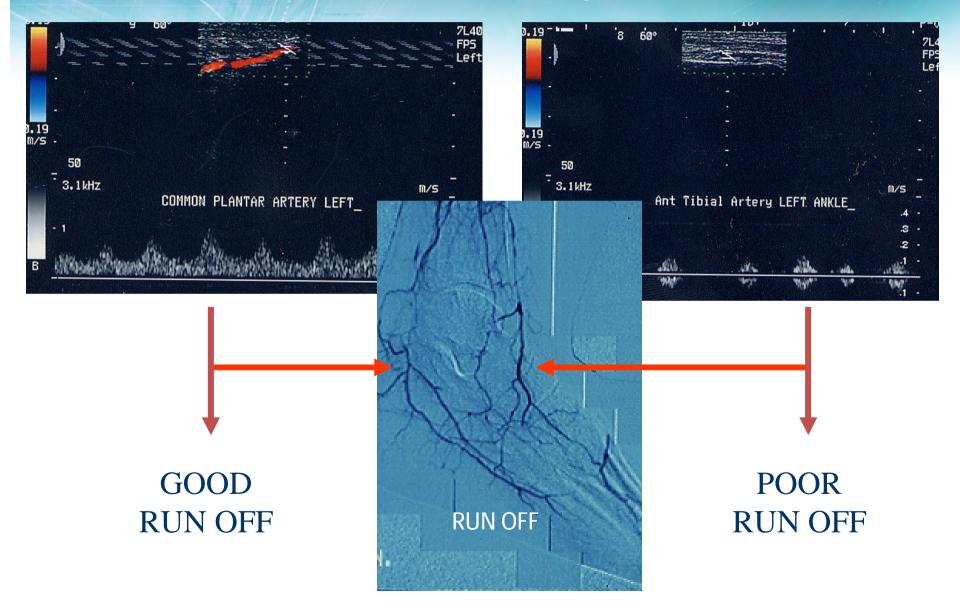
Artery	Sensitivity (%)	Specificity (%)
TPT	25-71	87-100
ATA	72-98	35-100
Peroneal a.	89-94	21-58
PTA	79-100	40-100
Dorsalis pedis	33-85	76-89
Plantar arteries	43-78	76-100

Bianchini Massoni C. 2014



Neuroischemic foot – TUC III C

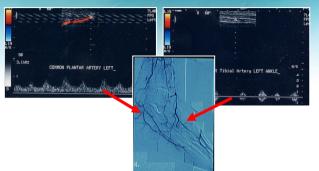
Angio: Posterior tibial artery, Peroneal artery and Anterior tibial artery long occlusion, no foot arteries

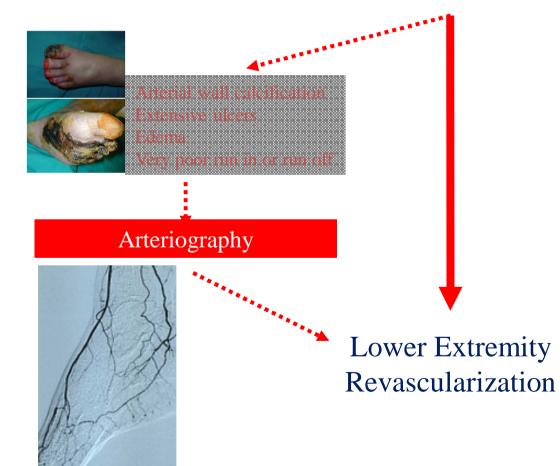


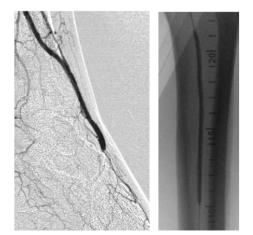
Tibial arteries disease in diabetic patients:

Can colour duplex mapping of the ankle and foot arteries improve the vascular program?

M Gargiulo, A Stella, S Tarantini et al ESVS 2000



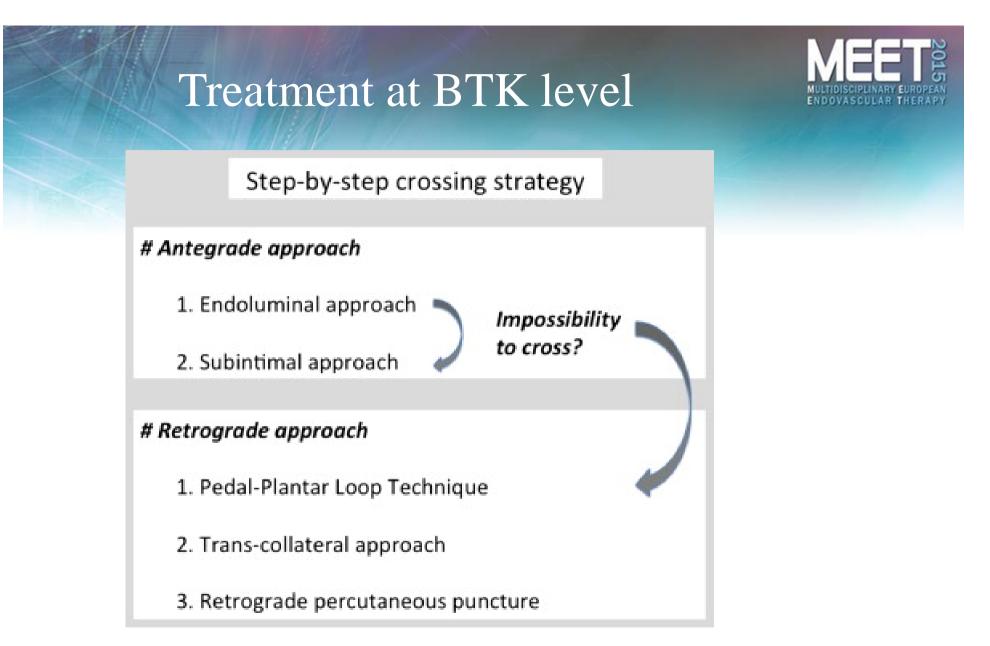

Neuro-ischemic foot



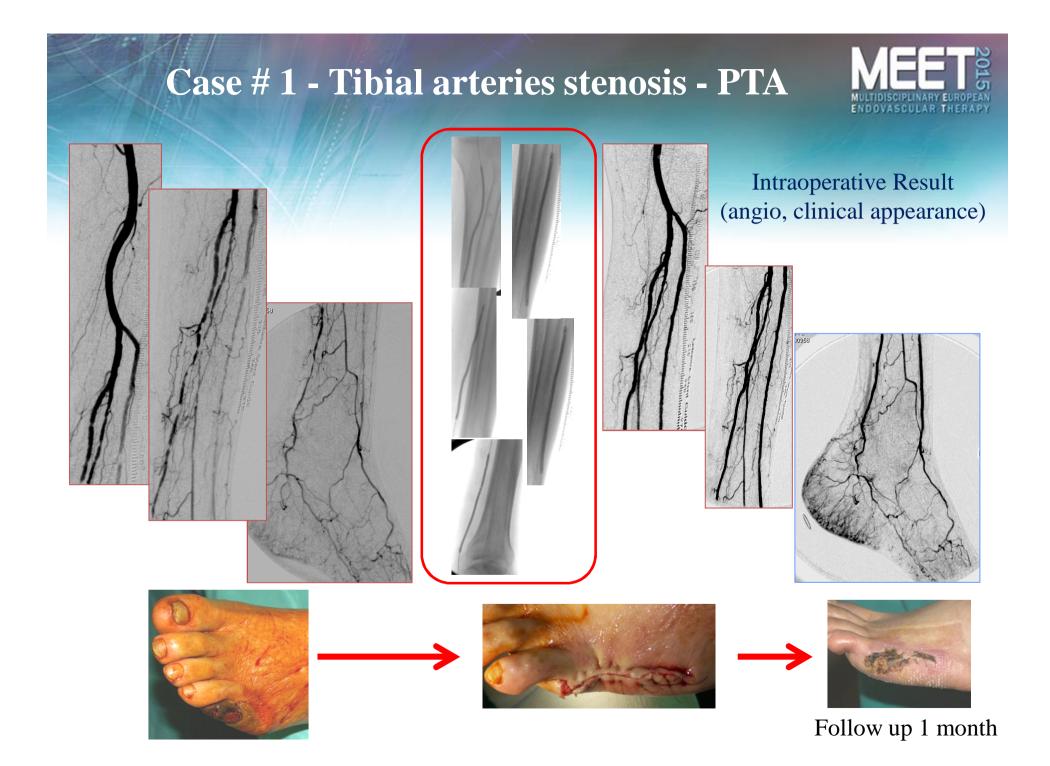
MEETS MULTIDISCIPLINARY EUROPEAN ENDOVASCULAR THERAPY

Duplex ultrasound arterial mapping from the EIA to the pedal arteries

Angiosomes: How Do They Affect My Treatment?



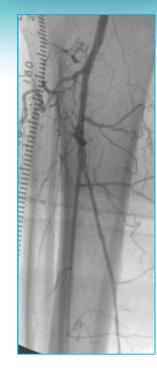
LM Palena et al. Tech Vasc Intervent Radiol 2014; 17:155 - 169


Targets for revascularization in CLI

1. Complete revascularization 1 vessel better than 0 2-3 vessels better than 1 Tibial arteries better than peroneal

2. Wound related artery revascularization Direct revascularization better than indirect revascularization

R. Ferraresi et al J Cardiovasc Surg 2013; 54: 685-711 LM Palena et al. Tech Vasc Intervent Radiol 2014; 17:155 - 169


Case #2 – Tibial-peroneal trunk obstruction - PTA

Intraoperative Result

Kissing balloon technique Gargiulo M et al Eur J Vasc Endovasc Surg 2008; 36:197-202

Follow up 10 months

CLI and tibial arteries disease – Endovascular treatment Results

Authors	Limbs	Technical success
Schwarten 1988	114	97%
Saab 1992	14	100%
Matsi 1993	84	83%
Durham 1994	14	100%
Hauser 1996	47	80%
Lofberg 1996	86	88%

Technical Failure 0-20%

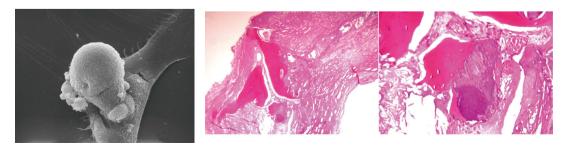
CLI and tibial arteries disease – Endovascular treatment Results

Authors	Limbs	Technical Success
Faglia E. et al Eur J Vasc Endovasc Surg 2005	1188	83.6%
Romiti M et al. J Vasc Surg 2008	2693	89%
Ferraresi R. et al Eur J Vasc Endovasc Surg 2009	107	93.5%
Alexandrescu V et al J Endovasc Ther 2011	232	80%
Our Experience 2012 Not published data	249	97.2%

Technical Failure 3-20%

Arterial calcification and PAOD

Arterial calcification and PAOD


Peripheral arterial calcification: prevalence, mechanism, detection and clinical implications

Rocha-Singh K et al. Catheterization and Cardiovasc interventions 2014; 83: E212-E220

Vascular Calcification

- Passive process: the results of Calcium and Phosphate ions exceeding solubility in tissue fluid, inducing the precipitation and deposition of hydroxyapatite crystals

- Attive process: VC is a result of intracellular molecular process involving the differentation of macrophages and VSMCs into osteoclast-like cells

Diabetic PAOD

1. Macroangiopathy is most often seen in popliteal and tibial arteries

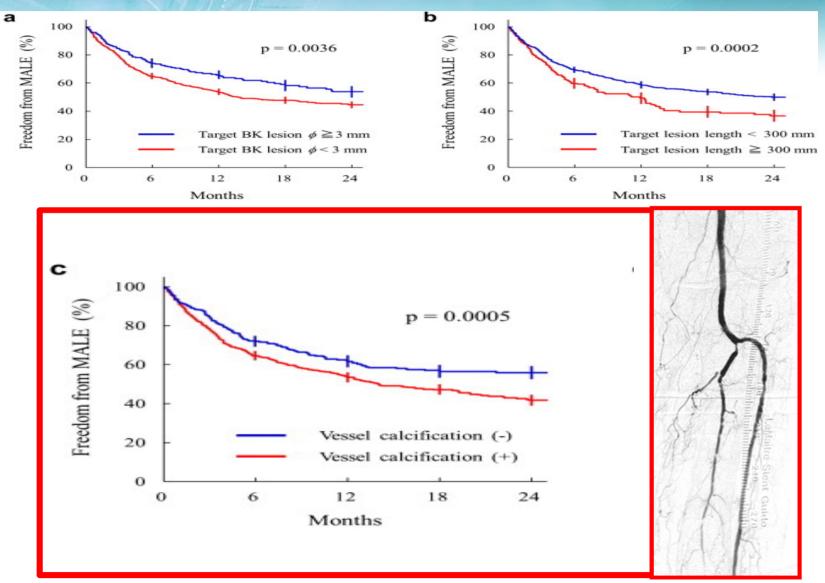
2. The lesions tend to be more extensive

3. Histopathological lesions

- Macroangiopathy
 - atherosclerosis diffuse intimal fibrosis **medial calcific sclerosis**
- Microangiopathy

no small artery or arteriolar occlusive lesion

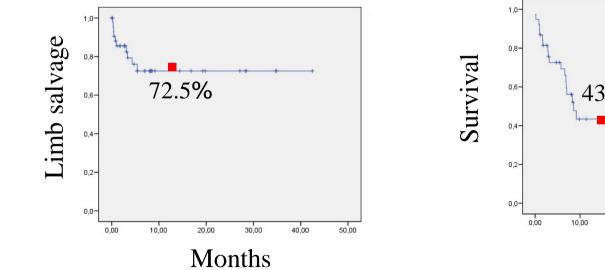
4. Patency of the ankle and foot arteries

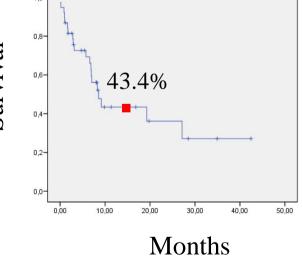


LoGerfo FW J Vasc Surg 1987; 5: 793-6

Anatomical Predictors of Major Adverse Limb Events after Infrapopliteal Angioplasty for Patients with Critical Limb Ischaemia due to Pure Isolated Infrapopliteal Lesions

Iida O et al. EJVES 2012; 44: 318 - 324


Endovascular treatment of the tibial arteries in heamodialysis


patients with critical limb ischemia: is it justified?

C. Bianchini Massoni et al Ann Vasc Surg 2014

Pts	39
Limbs	46
Infrapopliteal target arteries	91
Technical Success	89%

Arterial calcification and PAOD

Peripheral arterial calcification: prevalence, mechanism, detection and clinical implications

Rocha-Singh K et al. Catheterization and Cardiovasc interventions 2014; 83: E212-E220

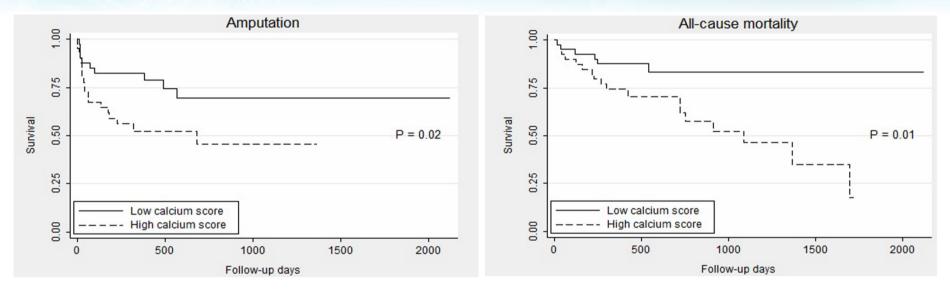
Proposed Peripheral Arterial Calcium Scoring System (PACSS)

Grade 0: No visible calcium at the target lesion site

Grade 1: unilateral calcification < 5cm; a) intimal calcification; b) medical calcification; c) mixed type

Grade 2: unilateral calcification \geq 5cm; a) intimal calcification; b) medical calcification; c) mixed type

Grade 3: bilateral calcification < 5cm; a) intimal calcification; b) medical calcification; c) mixed type


Grade 4: bilateral calcification \geq 5cm; a) intimal calcification; b) medical calcification; c) mixed type

This scoring system is based only on the length of the calcified portion but do not take in consideration the circunferential distribution

Association of lower extremity arterial calcification with amputation and mortality in patients with symptomatic peripheral artery disease.

Huang CL et al. Plos 2014; 9: 1-6

Arterial status, angiosome, arterial calcifications: it is possible to plan treatment at BTK level ?

Conclusion

Arterial status, angiosome, arterial calcifications: it is possible to plan treatment at BTK level ?

Conclusion

Arterial status, angiosome, arterial calcifications: it is possible to plan treatment at BTK level ?

Conclusion

- Clinical evaluation
 - Fontaine stage III / IV
 - Neuro-ischemic ulcers
 - . TWC
 - . angiosome
- Arterial disease evaluation
 - Extension
 - Run in, run off
 - Tibial and foot arteries calcium score

To plan treatment at BTK level – Arterial disease evaluation

Imaging

- Doppler CW, ABI
- Duplex
- TcPO2
- Angio MRI, Angio CT
- Angiography
- Tibial and foot arteries X-Ray

