Case presentations: challenges in heart valve diseases

A patient with high gradient on a prosthetic valve

Bernard Cosyns, MD, PhD (No Disclosure)

Clinical case

- 33 year old woman from Algeria
- MVR by a StJude # 27, 3 years ago for MVS (Rheumatic disease)
- Previously asymptomatic Last follow-up 6 months before adm unremarkable (see below)

BP 140/80 mm Hg HR 72 bpm Peak Gradient = 17 mmHg Mean Gradient = 5 mmHg Systolic PA Pressure =39 mmHg EOA = 2.2 cm² BSA = 1.75 m²

Patient history

Patient history (2)

- The patient presents with SOB class III progressively increasing since 3 months. She also complaints of fatigue
- Increasing weight (7kg/3m)
- Peripheral ankle oedema during the same period

BP 150/90 mm Hg HR 92 bpm reg Peak Gradient = 27 mmHg Mean Gradient = 14 mmHg Systolic PA Pressure = 50 mmHg EOA = 2 cm^2 BSA = 2.1 m^2

Patient history (3)

MVP dysfunction ? Thrombosis / Pannus

• INR = 3.5 < 2 weeks before admission

- May be chronic (previous INR might have been lower)
- VT occuring within recommended therapeutic range not unfrequent
- EOA not significantly modified

• Pannus

- Small one is enough
- More often aortic valve

| Centrum voor | Hart- en Vaatziekten

MVP dysfunction? PPM ?

Centrum voor Hart- en Vaatziekten

High transprosthetic gradient late FUP

Courtesy of P Pibarot

PAPs vs EOAi in MV prothesis mismatch

Li et al. JACC; 45:1034-1040, 2005

Is that so simple?

The good questions...

- Is the BSA really increasing ?
- Does the patient really have a PPM ?
- Why are the transvalvular gradients increasing ?
- Why is the patient becoming symptomatic?
- Do we need more exams ?

BSA increasing? How does it change EOAi?

BSA

DuBois Formula:

 $BSA = 0.007184 \times W^{0.425} \times H^{0.725}$

Mosteller Formula:

BSA (m²)= $\sqrt{\frac{\text{Ht}(\text{Cm}) \times \text{Wt}(\text{kg})}{3600}}$

Same EOA – Increasing BSA

	Patient number				
	1	2	3	4	5
Body surface area (m ²)	1.5	1.75	2.0	2.25	2.5
Cardiac output (I/min)	4.5	5.25	6.0	6.75	7.5
Mean pressure gradient (mm Hg)	13	17	22	28	35

- Fat free mass is the main determinant of cardiac output requirement
- FFM (bio-impedance) in order to provide equivalent to a BSA of 1.85 m2 in a normal weight patient

Does the patient really have PPM ?

Centrum voor Hart- en Vaatziekten

High transprosthetic gradient late FUP

Adapted from P Pibarot

Why are the gradients increasing? High flow

Stroke volume increase

$SV = 68 \text{ mL} \longrightarrow SV = 78 \text{ mL}$

Centrum voor Hart- en Vaatziekten

Why symptoms ?

BP 150/90 mm Hg HR 92 bpm reg Peak Gradient = 27 mmHg Mean Gradient = 14 mmHg Systolic PA Pressure = 50 mmHg EOA = 2 cm^2 BSA = 2.1 m^2

| Centrum voor | Hart- en Vaatziekten

 $mPAP = PVR \times CO + LAP$

PAP with increasing CO: physiology

Low level exercise	СО	mPAP	LV Compl	TPR=PVR+ LVFR	PVR
< 50 yrs	↑ 85 %	↑ 41 %	\uparrow	↓ 25 %	↓ 12 %
50-70 yrs	↑ 71 %	↑ 66 %	\downarrow	~	~
>70 yrs	↑ 88 %	↑↑ 119 %	$\downarrow\downarrow$	↑ 17 %	~

. Reeves JT, et al. Am J Physiol Lung Cell Mol Physiol 2005; 288:L419-L425.

Kovacs S, et al. Eur Respir J 2009; 34:888-94.

Why symptoms ? Do we need more ?

Normal changes during pregnancy

Hemodynamic Parameter	Change During Normal Pregnancy	Change During Labor and Delivery	Change During Postpartum
Blood volume	† 40%-50%	î	↓ (autodiuresis)
Heart rate	↑ 10-15 beats/min	↑	Ļ
Cardiac output	↑ 30%-50%	↑ Additional 50%	ţ
Blood pressure	↓ 10mmHg	î	↓
Stroke volume	↑ First and second trimesters; ↓ third trimester	↑ (300-500mL per contraction)	ţ
Systemic vascular resistance	Ļ	î	ţ

Take home messages

- Take a look at the valve
- Take a look at the ventricle
- Take a look at the haemodynamic conditions •
- Take a look at the patient •

