

College of Physicians and Surgeons

Endovascular Repair for Type A Aortic Dissection

FIRAS F MUSSA, MD, MS ASSOCIATE PROFESSOR OF SURGERY

CI 2016, LILLE

Conflicts

- Bolton
- WL Gore

How it differs from the thoracoabdominal aorta

- Area that needs to be covered/excluded is relatively short
- \checkmark (~ 8 cm in length)
- Access to deliver devices do not have to be transfermoral based
- ✓ Carotid or axillary access available
- ✓ Transapical approach
- Hemodynamic forces
- Deployment of modular branched grafts originate from target vessel not from the endoprosthesis main body

Ascending Aortic Pathology

Off the Shelf Devices

- Unmodified TEVAR: Long (10 cm), leading nose cone
- PMEG: structural integrity, IDE, time
- Abdominal cuff: can't reach, 32-34 mm diameter, less accurate, nose cone
- ASD plug
- Amplatzer plug

Columbia University

Joshua D. Horton, BS,^{*} Tilo Kölbel, MD, PhD,[†] Stephan Haulon, MD, PhD,[‡] Ali Khoynezhad, MD, PhD,[§] Richard M. Green, MD,^{II} Michael A Borger, MD, PhD,^{II} and Firas F Mussa, MD, MS^{II}

Figure. Identification process for included studies.

Technical Success, Complications, and Reintervention of TEVAR for TAAD

Study	Design ^a	n	Acute ^b ,	Technical	Stroke	Endoleaks	Reintervention
(first author)			No. (%)	Success,	Rate, No.	(n)	Rate (%)
				No. (%)	(%)		
Ye ⁴	R	45	30 (67)	44 (98)	3 (6.8)	10	0
Khoynezhad ⁶	R	15	6 (40)	15 (100)	2 (13)	0	0
Vallabhajosyula ⁷	R	2	2 (100)	2 (100)	1 (50)	2	0
Kusagawa ⁸	CS	15	15 (100)	15 (100)	0 (0)	NR°	20
Lu ⁹	CS	15	5 (33)	15 (100)	0 (0)	0	6.7
Roselli ¹⁰	CS	11	9 (82)	6 (55)	2 (18)	5	27
Nienaber ⁴	CS	6	0 (0)	6 (100)	0 (0)	0	0
Ronchey ¹¹	CS	4	4 (100)	4 (100)	0 (0)	NR	0
Bernardes ¹²	CS	3	2 (67)	3 (100)	0 (0)	2	66.7

Mortality of TEVAR for TAAD

Study (first author)	n	Intraoperative Mortality, No. (%)	30-day Mortality, No. (%)	Mean Follow-Up Period (mo.)	Overall Mortality, No. (%)
Ye ⁴	45	1 (2.2)	3 (6.7)	35.5	5 (11)
Khoynezhad ⁶	15	0 (0)	0 (0)	8.9	2 (13)
Vallabhajosyula ⁷	2	0 (0)	0 (0)	33	1 (50)
Kusagawa ⁸	15	0 (0)	0 (0)	37.2	0 (0)
Lu ⁹	15	0 (0)	0 (0)	22	0 (0)
Roselli ¹⁰	11	1 (9.1)	3 (27)	12	6 (55)
Nienaber ⁴	6	0 (0)	1 (17)	9-39 (range)	1 (17)
Ronchey ¹¹	4	0 (0)	0 (0)	15	0 (0)
Bernardes ¹²	3	0 (0)	0 (0)	3.5-46.4 (range)	0 (0)

Anatomical Considerations

- Proximal and distal landing zone \geq 20mm
- Fenestration distal to STJ, minimum distance between intimal fenestration and STJ ≥ 10 mm
- Absence of coronary bypass grafts originating from the ascending aorta
- True lumen aortic diameter ≤ 38mm AND total aortic diameter ≤ 46mm
- Absence of grade 3/4 regurgitation
- Iliofemoral vessels > 7mm diameter and < 90° angulation (24F)

Columbia University

Acute aortic insufficiency with hypotension upon deployment

Leading edge of *Free flow* prevents normal aortic valve closure

Bolton -- Deployment control and avoid retroflex achieved through Supporting wires

Ascending Cases Experience

Oblique deployment avoided

What is needed to continue forward progress

- Multidisciplinary teams with CT surgeons on board
 - ✓ Fully hybrid endovascular suite
 - ✓ Pump capability \rightarrow Margin for error miniscule
 - ✓ Transapical access capabilities
- Technological needs:
 - ✓ Protection of wire in left ventricle
 - ✓ Short bullet tip with no leading bare stent
 - ✓ Smaller profile for carotid access
 - Branched grafts with bridging stent-grafts to achieve secure seal and fixation

Columbia University

The body is a collection of tubes waiting to be stented"----*Anonymous*

•Coronary branches are stiff and unstable

•Flexible balloon expandable SG that can be attached to current TAVR

Columbia University

Thank you

