

How can I reduce X-Ray exposure?

A. Hertault, T. Martin-Gonzalez, R. Spear, R. Clough, R. Azzaoui, J. Sobocinski, S. Haulon

With Good

Practices

With support of new technologies

« As Low As Reasonably Achievable »

Peach, Eur J Vasc Endovasc Surg, 2012

Avoid DSA runs

1 DSA image ~ 500 fluoro images

Avoid DSA runs

 \sim

1 DSA image

500 fluoro images

Use Fluoro Loops

Avoid Magnification

Maintain Image Quality

Maurel, J Card Thor Surg, 2014

mag 0

Some facts : Switching from FOV 30cm to FOV 16cm increases dose rate by ~2

Avoid Magnification

Use Collimation

Some facts :

On a bifurcated EVAR exam of 30 Gy.cm², 18 Gy.cm² can be saved just by using collimation

DAPtot = 30 Gy.cm² (non-collimated) DAPtot x (1-0,6) = 12 Gy.cm² (60% collimated) DAPsaved = 18 Gy.cm² (dose savings)

In Lille, Baseline for bifurcated EVAR is 12Gy.cm² an in average image is collimated by 60%.

Hertault EJVES 2014

Use Collimation

Virtual Collimation

Avoid extreme angulations

Plan procedure on a workstation

Optimize system Geometry

High Detector / Low Table

Air Kerma at patient skin

Low Detector / Low Table

Low Detector / High Table

Optimize system Geometry

Air Kerma Dose Reduction by up to 25%

Support of New Technologies (Others)

Set up your equipment

IQ+

Normal

15fps

RDL+

Normal

15fps

15fps

IQ+

Normal

30fps

7.5fps

3.75fps

Use Flat Panel Detector

In the long Term: Gain awereness

Watch Dosimeter reports

PITAL DES

ALCORD OF

Evaluate your practice Compare your results to the literature

REVIEW

Editor's Choice — Minimizing Radiation Exposure During Endovascular Procedures: Basic Knowledge, Literature Review, and Reporting Standards

A. Hertault ^a, B. Maurel ^a, M. Midulla ^b, C. Bordier ^c, L. Desponds ^c, M. Saeed Kilani ^b, J. Sobocinski ^a, S. Haulon ^{a,*}

^a Vascular Surgery Aortic Centre, Hôpital Cardiologique, CHRU Lille, France ^b Vascular Radiology, Aortic Centre, Hôpital Cardiologique, CHRU Lille, France ^c GE Healthcare, Buc, France

WHAT THIS PAPER ADDS

Objective/Background: This review intends to provide basic knowledge about X-ray physics, biological risks, dose metrics, and radiation protection. It proposes standard nomenclature to measure, estimate, and report dose in order to perform accurate comparisons between publications and practices. A literature review per common procedure type with reference levels is also proposed to allow physicians to evaluate their daily practice.

In the long Term: Gain awereness

Real-Time Active Dosimeters

Skin Dose Monitoring

Adjust your practice in real time

Spot adverse events and behaviours

Vano Radiation Measurements 2011

Take Home Message

- More Endo More complex
 - = Dose is a real issue
- Follow ALARA
- Gain awereness Evaluate your results Train your trainees & yourself
- Get the support of new technologies

How can I reduce X-Ray exposure?

A. Hertault, T. Martin-Gonzalez, R. Spear, R. Clough, R. Azzaoui, J. Sobocinski, S. Haulon