

Tips and tricks to design a hybrid room that I want to work in

F. Gómez Palonés

Vascular Surgery

Hospital Doctor Peset. Valencia. SPAIN

www.critical-issues-congress.com

Disclosure of Interest

Speaker name: F. Gómez Palonés

I have the following potential conflicts of interest to report:

- Cook AI Proctor
- U WL Gore Proctor

Hybrid O.R. 2 in 1

Let the second s

Hybrid OR costs

1.2 million \$ to 4million \$ (Average 2,2M\$).

EFFICIENCY

Quality

- Increse Technical success
- Reduce reintervention rate
- Increase indications for treatment
- Improved workflow

Safety

- Decrease radiation exposure
- Reduce contrast volumen
- Enhance patient monitoring and anaesthesiologic care
- Reduce procedure related complications
- Personnel protection

Productivity

- Reduce operating time
- Increase cases treated
- Reduce hospital stay
- Reduce readmissions & follow up exams

PLANNING

Hybrid: not always means succesful creation

1.Imaging system 2.Operating table. 3.Monitors

Where the money goes

Image generation

- Powerful generator (100 Kw)
- Efficient & durable Xray tube
 - Proper cooling system: no overheating

- Digital flat panel detector:
 - Size: 30x30 / 30x40 / 40X40

Ceiling mounted

Floor mounted -1

Floor mounted -2

Space

	Flex-move (Philips)	Discovery (GE)	Zeego (Siemens)	Standard OR	Hybrid OR
Min surface (m2)	55	55	70	50	90
Min Heigth (metres) (floor-floor)	3.5	3.5	3.20	3.20	3.5

1.Imaging system
 2.Operating table
 3.Monitor

Operating table

Surgical	Interventional
 Rails for mounting surgical equipment. Mobility: vertical 	 Radiolucent floating table top Floating length 200 cm. Motorized adjustments

Horizontal

Lateral tilt.

Ease and direct access

to the patient from all

٠

sides

Trendelemburg.

- Sinchronized with imaging system
 - Rotatable
 - Accomodate obese patients and CPR manouvers

Monitors

3 How should it work together?

- Flexibility
- Efficiency
- Safety

Flexibility

- Fast and easy access to the patient
- Easy and lively positioning of the C-arm

Convenient workflow

Define workzones

And adapt your workflow

Do a mock set up

- C-arm : 90º lateral projection
- Arterial access Left axillary artery
- Combined femoral artery approacHh

Detector and tube sinchronic rotation

Advanced applications

Application

- Image fusion 2D / 3D
- Cone-BeamCT / Dyna CT
- 3d Angiography
- 3D roadmap
- 3D puncture guidance
- Dedicated work station
- Communication

Advantages

- Radiation dose reduction
- Contrast load reduction
- Intervention guidance
- Reduced operation time
- Quality control:
 - Reduce complications
 - Reduce late reintervention

Safety in radiation exposure

Positioning without radiation

Fixed isocenter

Final comments

- 1. There's no "ONE-SIZE-FITS-ALL" system.
- 2. Define your needs and goals.
- 3. Discuss your needs with all the stakeholders
- 4. Check your usual workflows, and simulate them on virtual layouts.
- 5. Ask for advice to experienced centers working with each of the options in play

Thanks for your attention!!

gan

2011