Optimizing Fusion Imaging

Mark A. Farber, MD FACS Director, Aortic Center Professor of Surgery and Radiology University of North Carolina Chapel Hill, NC

Disclosures

Consultant for:

- -WL Gore -Cook -Bolton Medical -Endologix
- Research Support

-Cook

3D Lab Interpretation

Precise Imaging

- Detailed imaging is critical
 - Avoids complications
 - Inter-observer variation is usually $\leq 15^{\circ}$ and ≤ 1 mm
 - Larger variations can lead to target vessel complications
- Important to examine and modify centerline

Intra-Operatively

Fusion Imaging

N

Contrast Angiography

1440 11440

Pre-cannulation

Target Vessel Identification

Technique	Advantages	Disadvantages
Contrast Angiography	No additional manipulations of vessel	More contrast Not dynamic
Pre-cannulation	Reduces Contrast Straightens Vessel Helps reduce cannulation time/XRT dose	Potential increase risk of target vessel injury
CT Angiography/Fusion Imaging	Reduces Contrast Reduces cannulation time/XRT dose	Requires special equipment Some additional time Vessel Deformation
IVUS	No contrast No vessel manipulation	Requires reference imaging

• Additional contrast minimization with dilute contrast (50%)

FEVAR Implantation IVUS/Fusion

Outro Determined of the second of the second

Right Renal Artery

IVUS evaluation performed with stiff wires in place to simulation deformation that will occur

AP View IVUS/Fusion

Lateral View IVUS/Fusion

Right Renal Artery

Parallax Correction

- Parallel can be an issue in large aneurysms
- Managed by performing imaging or near orthogonal planes and in regions of the aorta that are not aneurysmal

Intra-Operative Guidance

Identification of Vessel Origins

3D Aortic Overlay

Improvement in Fusion Technology

- Original fusion manipulation required rotational angiography for registration (3D)
- Advancement in technique allow for registration with two fluoroscopic images at least 30 degrees offset (2D)

Optimization thru multiple techniques

- Primary modality is performed thru traditional fusion (2D/3D)
- Accuracy improved by implementing IVUS for verification
 - Adds costs
 - Marker catheter used for gate confirmation and dissection evaluation
- For isolated difficult vessels, pre cannulation may be necessary

Completion Assessment

Imported to Terarecon

Device Complications Stent Crushing

Courtesy: G. Oderich

Generally occurs on contralateral renal or SMA

Complications AP stent compression

AP View

AP View

Stent crush in AP direction

R

Conclusions

- Advancements in fusion technology aid tremendously in device implantation
 - Limits the need for precannulation and contrast usage
- Imaging modalities and techniques have advanced significantly since the initial release of the technology
 - Combining modalities allows for optimization
- Advanced imaging techniques implemented preoperatively, intra-operative can reduce the number of secondary interventions required
 - reducing radiation and contrast usage
 - improving outcomes