R & D challenges associated with endografting of type A aortic dissections

Martin Czerny

Content

Basic insights into pathological process

Dissection induced geometry changes

Initial attempts

Dedicated programme

Future developments

Summary

The aorta displays heterogenity regarding developmental origin²

Secondary heart field SMCs

Secondary heart field MMCs

Dijke, Arthur, Nat Rev 2007

CT Angiography

From the first frame, segment aorta lumen

Schwartz, Czerny, Biomed Imag 2012

CT Angiography

From segmentation and deformation fields, extract motion

Schwartz, Czerny, Biomed Imag 2012

Schwartz, Czerny, Biomed Imag 2012

Intraoperative view

Morphological correlate

Sobocinski EJVES 2011

Content

Basic insights into pathological process

Dissection induced geometry changes

Initial attempts

Dedicated programme

Future developments

Summary

Objective

To assess the extent of changes in aortic geometry induced by the dissection process by means of computed tomography angiography (CTA) obtained prior and after acute type A aortic dissection

Methods

Results

- **Overall 63 patients**
 - Median age 68 years
 - 46% females
 - Similar risk profile •
 - Pre-dissection ascending diameter was <50 mm in all ۲

Results

Results

Content

Basic insights into pathological process

Dissection induced geometry changes

Initial attempts

Dedicated programme

Future developments

Summary

Ideal clinical scenario

Alternative approaches- still experimental

Completion CT scan

Zimpfer, Czerny ATS 2006

Content

Basic insights into pathological process

Dissection induced geometry changes

Initial attempts

Dedicated programme

Future developments

Summary

day 0

day 5

Thinl

Content

Basic insights into pathological process

Dissection induced geometry changes

Initial attempts

Dedicated programme

Future developments

Summary

Morphological correlate

Sobocinski EJVES 2011

Concept Prototype

Distal extension to cover to the level of the brachiocephalic trunk

Summary

Thorough understanding of pathophysiology is key

Complexity is amplified as compared to distal aortic segments

A tube alone is not sufficient to treat the majority of patients

Efforts for a valved conduit are ongoing

Combining knowledge and technology will pave the way