

COURSE DIRECTORS

Stéphan HAULON, Lille, France Tara MASTRACCI, London, UK

STEERING COMMITTEE

Tim RESCH, Malmö, Sweden Eric VERHOEVEN, Nürnberg, Germany Stéphan HAULON, Lille, France

CKITICAL ISSUES

in aortic endografting 2016

www.critical-issaes-congress.com

We shouldn't be doing endo surgery in fit patients!

Team endo surgery

Piergiorgio Cao, MD, FRCS

Disclosure

Speaker name:

Piergiorgio Cao

☐ I do not have any potential conflict of interest

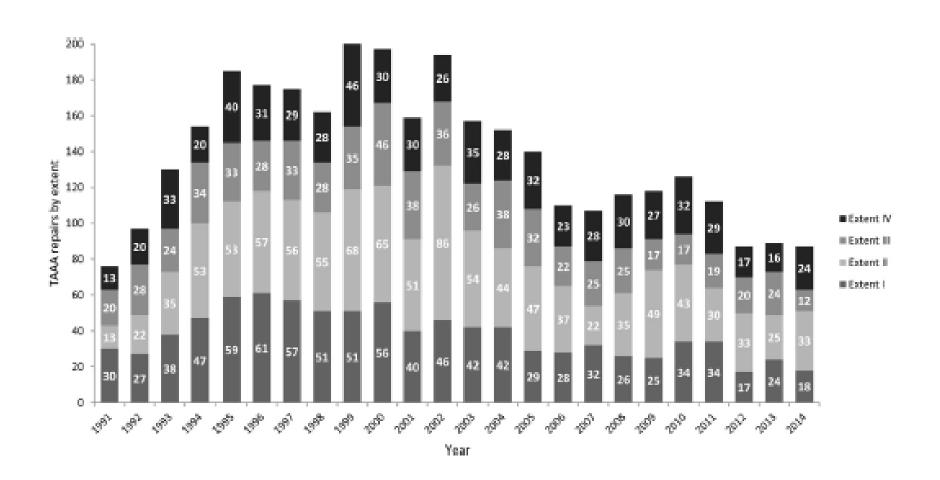
WHO IS MY OPPONENT?

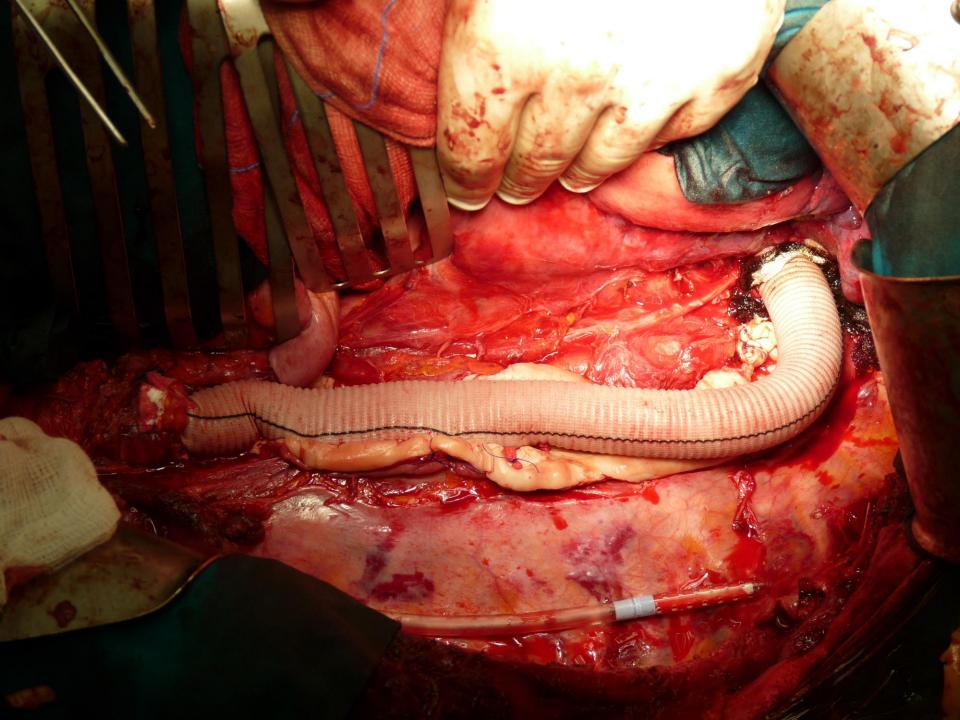
Surgical Repair of Descending Thoracic and Thoracoabdominal Aortic Aneurysms in

Open Surgical Repair of Descending Thoracic Aortic Aneurysms in the Endovascular Era: A

9 Type IV Thoracoabdominal Aneurysm Repair: Predictors of Postoperative Mortality,

Spinal Cord Injury, and Acute Intestinal Ischemia


Allograft replacement for infrarenal aortic graft infection: Early and late results in 179 patients


Open repair of chronic post-traumatic aneurysms of the aortic isthmus: The value of direct aortoaortic anastomosis

Edouard Kieffer, MD, Jean-Pascal Leschi, MD, and Laurent Chiche, MD, Paris, France

Outcomes of 3309 thoracoabdominal aortic aneurysm repairs

Joseph S. Coselli, MD, a,d,e Scott A. LeMaire, MD, a,b,c,d,e Ourania Preventza, MD, a,d,e Kim I. de la Cruz, MD, a,d,e Denton A. Cooley, MD, Matt D. Price, MS, a,d Alan P. Stolz, MEd, a,d Susan Y. Green, MPH, a,d Courtney N. Arredondo, MSPH, and Todd K. Rosengart, MD, a,c,d,e

Percutaneous approach and early revascularization of lower limbs

Key points

 fEVAR/bEVAR, due to lower invasiveness based on the information provided by several case series, is increasingly performed for TAAA

- Confusing and Conflicting results are reported in the literature
- No level 1 evidence supports the use of this technology in fit patients

A propensity-matched comparison of outcomes for fenestrated endovascular aneurysm repair and open surgical repair of complex abdominal aortic aneurysms

Maxime Raux, MD, a,b Virendra I. Patel, MD, MPH,b Frédéric Cochennec, MD, a Shankha Mukhopadhyay, MS,b Pascal Desgranges, MD, PhD, a Richard P. Cambria, MD,b Jean-Pierre Becquemin, MD, and Glenn M. LaMuraglia, MD,b Créteil, France; and Boston, Mass

J Vasc Surg 2014

2001 – 2012:
59 FEVAR and 324 OSR

Table V. Multivariable models for 30-day outcomes in matched patients

59 F	EVAK and s	324 USK		Outcome	OR	95% CI	P
Table III. Univa	**	ning of the store veloping train		•	5.1	1.08-24	.04
Outcome	(n = 42) (%)	(n = 147) (%)	P	COPD	2.3 3.3	1.1-4.9 1.7-6.7	.03 .0008
30-day mortality Complication	9.5	2	.04	Cardiac complication FEVAR Pulmonary complication	0.47	0.1-2.2	.34
Any	43	23	.01	FEVAR	1.19	0.41 - 3.5	.75
Cardiac Pulmonary	4.8 12	9.5 10	.2	Renal complication FEVAR Procedural complication	2.8	0.6-13	.2
Renal	7.1	2.7	.1	FEVAR	4.3	1.5-12	.006
Procedural	24	8	.004	MI	3.9	1.4-11	.009
Graft	33	2	<.0001	COPD	4.3	1.6-11	.004
				Graft complication FEVAR	24	6.5-89	<.0001

Endovascular Repair With Fenestrated-Branched Stent Grafts Improves 30-Day Outcomes for Complex Aortic Aneurysms Compared With Open Repair

Nikolaos Tsilimparis, ¹ Sebastian Perez, ¹ Anand Dayama, ¹ and Joseph J. Ricotta II, ^{1,2} Atlanta, Georgia

American College of Surgeons National Surgical Quality Improvement Program database

2005-2010: **1091** open repair and **264** endo repair

Table I. Epidemiologic data of the study cohort

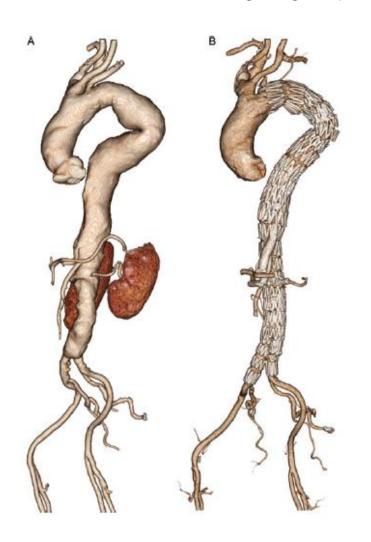
	Open repair	FEVAR
Female	311 (28.5%)	47 (17.8%)
African-American	41 (3.8%)	7 (2.7%)
ASA I/II	Only ¼ of FEVAR patients	14 (5.3%)
ASA III	was ASA 4	181 (68.6%)
ASA IV	was A3A 4	69 (26.1%)
ASA V	1 (0.1%)	0

Endovascular Repair With Fenestrated-Branched Stent Grafts Improves 30-Day Outcomes for Complex Aortic Aneurysms Compared With Open Repair

Nikolaos Tsilimparis, ¹ Sebastian Perez, ¹ Anand Dayama, ¹ and Joseph J. Ricotta II, ^{1,2} Atlanta, Georgia

Table III. Thirty-day outcome of open repair versus repair with fenestrated-branched stent grafts for complex aortic aneurysms

	Open repair	FEVAR	P value ^a	Total cohort
Mortality	59 (5.4%)	2 (0.8%)	0.001	61 (4.5%)
Any complication	458 (42%)	51 (19.3%)	< 0.001	509 (37.6%)
Any nonsurgical complication	324 (29.7%)	21 (8.0%)	< 0.001	345 (25.5%)
Surgical complication	240 (22%)	40 (15.2%)	0.014	280 (20.7%)
Pulmonary complication	232 (21.3%)	6 (2.3%)	< 0.001	238 (17.6%)
Renal complication	108 (9.9%)	4 (1.5%)	< 0.001	112 (8.3%)
Cardiovascular complication	85 (7.4)	5 (1.9%)	0.001	90 (6.6%)
Graft failure	11 (1.0%)	7 (2.7%)	0.036	18 (1.3%)
Any sepsis postoperative	110 (10.1%)	4 (1.5%)	< 0.001	114 (8.4%)
Return to operation room	110 (10.1%)	12 (4.5%)	0.005	122 (9.0%)
Days of operation to discharge	10 ± 9.6	3.0 ± 4.3	< 0.001	8.7 ± 9.2


^{*}Indicates P < 0.005.

Results and Factors Affecting Early Outcome of Fenestrated and/or Branched Stent Grafts for Aortic Aneurysms

A Multicenter Prospective Study

Ann Surg 2015

J. Marzelle, MD,* E. Presles, MSc,† and J. P. Becquemin, MD, PhD*; On behalf of the WINDOWS trial participants (see appendix)

2009 – 2012: 268 patients

8 University Hospitals
each having previously
performed at least 15
f/b-EVAR

Results and Factors Affecting Early Outcome of Fenestrated and/or Branched Stent Grafts for Aortic Aneurysms

A Multicenter Prospective Study

Ann Surg 2015

J. Marzelle, MD,* E. Presles, MSc,† and J. P. Becquemin, MD, PhD*; On behalf of the WINDOWS trial participants (see appendix)

	In-hospital death	Severe complications and death
GROUP 1 N = 184 N = 184	6.5 %	17.2 %
GROUP 2 N = 42 suprarenal N = 16 6% TAAA 4 N = 26 9.7%	14.3 %	25 %
GROUP 3 N = 42	21.4 %	31 %
N=24 9% N=16 6% 0.7% OVERALL N = 268	10.1 %	22 %

Results and Factors Affecting Early Outcome of Fenestrated and/or Branched Stent Grafts for Aortic Aneurysms

A Multicenter Prospective Study

Ann Surg 2015

J. Marzelle, MD,* E. Presles, MSc,† and J. P. Becquemin, MD, PhD*; On behalf of the WINDOWS trial participants (see appendix)

TABLE 6. Predictive Factors of Outcome in Patients Treated by f/b-EVAR

	Univariate An	Multivariate A	nalysis	
	HR; 95% CI	P	HR; 95% CI	P
30-d mortality: 6.7%				
Group 1 vs 2 and 3*	2.70; 1.09-7	0.0321	ND	
PAOD	2.9; 1.15-7.36	0.0246	ND	
Intropagative complications	502: 2.25 14.01	0.0002	ND	

- Group 2 or 3 (vs 1): predictive factor of severe complications
 and death (HR = 2.10; 95% CI: 1.26–3.48; P = 0.0043)
- Technical complications and intervention time significantly influenced in-hospital mortality (HR = 4.39; 95% CI: 2.05–9.38; P
- = 0.0001) and <u>severe complications and death</u> (HR = 3.07; 95%

CI: 1.84–5.11; P < 0.0001)

PAOD	4.55; 1.39-14.92	0.0123	ND	
Type of graft	,		.,,,,	
Fenestrated	1.0	0.0002	ND	
Branched	18.4; 4.59-73.46	0.0002	ND	
Fenestrated and branched	5.82; 0.97-34.86	0.0002	ND	
Upper limb approach	18.4; 3.98-85.3	0.0002	ND	
Thoracic stent graft	11.42; 3.34-39.03	0.0001	ND	
4 fenestrations and/or branches vs 1-3	6.80; 1.80-25.64	0.0046	ND	
ATT- 4:00 between several and statistically				

^{*}The difference between groups was not statistically significant.

ND indicates not done (low number of events); only significant variables are detailed in multivariate analysis.

FENESTRATED/BRANCHED – evolution of technique

Editor's Choice — The Impact of Early Pelvic and Lower Limb Reperfusion and Attentive Peri-operative Management on the Incidence of Spinal Cord Ischemia During Thoracoabdominal Aortic Aneurysm Endovascular Repair

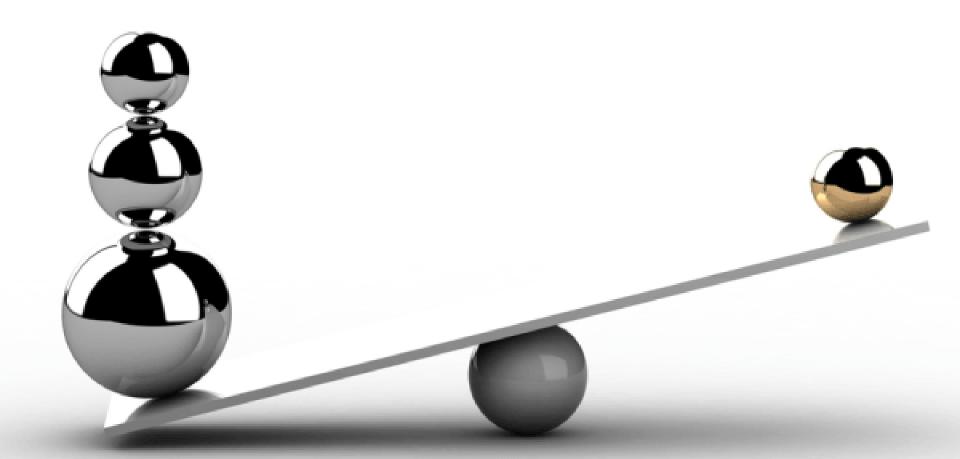
B. Maurel ^a, N. Delclaux ^a, J. Sobocinski ^a, A. Hertault ^a, T. Martin-Gonzalez ^a, M. Moussa ^a, R. Spear ^a, M. Le Roux ^a, R. Azzaoui ^a, M. Tyrrell ^b, S. Haulon ^a, ^a

Table 2. Thirty day complication rates.

	Total ($n = 204$)	Group 1 ($n = 43$)	Group 2 ($n = 161$)	RR (95% CI)	p
Major complications	54 (26.5)	15 (34.9)	39 (24.2)	1.1637 (0.9195-1.4728)	.11
Spinal cord ischemia	8 (3.9)	6 (14.0)	39 (24 2) 2 (1.2)	1.1477 (1.0163-1.2961)	<.01
30 day mortality	14 (6.9)	5 (11.6)	9 (5.6)	0.4807 (0.1699-1.3604)	.15
Minor complications	56 (27.5)	12 (27.9)	44 (27.3)	1.0080 (0.8181-1.2420)	.54

Note. Values are given as n (%). RR = relative risk; CI = confidence interval.

Table 3. Thirty day outcomes of patient with type I, II, and III thoracoabdominal aortic aneurysms.


	Group 1 ($n = 24$)	Group 2 ($n = 95$)	RR (95% CI)	p
Major complications	12 (50.0)	27 (28.4)	1.4316 (0.9409-2.1781)	.04
Spinal cord ischemia	6 (25.0)	2 (2.1)	1.3053 (1.0341-1.6475)	<.001
30 day mortality	5 (20.8)	7 (7.4)	0.3537 (0.1229-1.10175)	.06
Minor complications	8 (33.3)	30 (31. 9)	1.0213 (0.7454-1.3993)	.54

Note. Values are given as n (%). RR = relative risk; CI = confidence interval.

a Aortic Centre, Hôpital Cardiologique, CHRU de Lille, INSERM U1008, Université Lille Nord de France, 59037 Lille Cedex, France

b King's Health Partners, London, UK

...what about comparative studies?

Ciro Ferrer, MD, Piergiorgio Cao, MD, FRCS, Paola De Rango, MD, PhD, Yamume Tshomba, MD, Fabio Verzini, MD, PhD, FEBVS, Germano Melissano, MD, Carlo Coscarella, MD, and Roberto Chiesa, MD, Rome, Perugia, and Milan, Italy

2007 - 2014: 341 patients

84 TAAA endo repair (Group 1)

257 TAAA open repair (Group 2)

Ciro Ferrer, MD, Piergiorgio Cao, MD, FRCS, Paola De Rango, MD, PhD, Yamume Tshomba, MD, Fabio Verzini, MD, PhD, FEBVS, Germano Melissano, MD, Carlo Coscarella, MD, and Roberto Chiesa, MD, Rome, Perugia, and Milan, Italy

J Vasc Surg 2016

Table I. Demographics and baseline characteristics of 84 patients undergoing endovascular repair (*ER*) and 257 patients undergoing open surgery (*OS*) for thoracoabdominal aortic aneurysm (TAAA)

	ER, No. (%)	OS, No. (%)	P value
Patients Mean age, years Male Smoking Hypertension Dyslipidemia CAD COPD Diabetes Renal impairment Previous aortic surgery	84 72.1 63 (75) 23 (27.4) 76 (90.5) 37 (44) 47 (56) 43 (51.2) 8 (9.5) 12 (14.3) 28 (33.3)	257 66.2 195 (75.6) 107 (41.6) 234 (91.1) 157 (61.1) 63 (24.5) 127 (49.4) 50 (19.5) 56 (21.8) 55 (21.4)	<.001 .88 .02 .83 .08 <.001 .80 .04 .15 .40
Urgent/emergent	1 (1.1)	12 (4.7)	.04

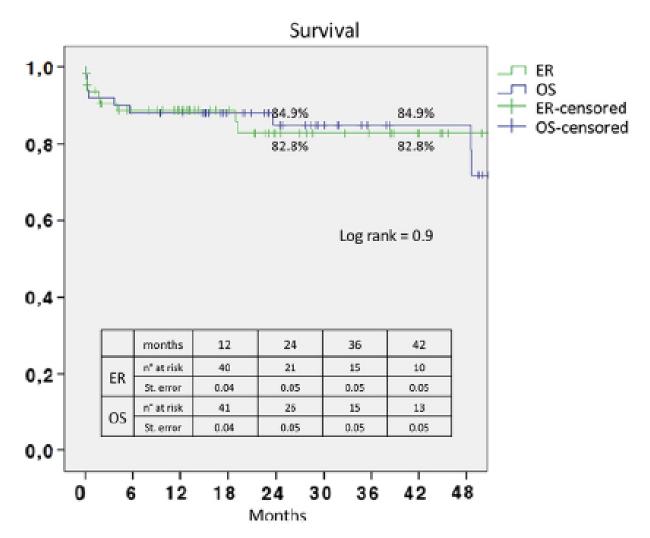
CAD, Coronary artery disease; COPD, chronic obstructive pulmonary disease.

Table II. Demographics and baseline characteristics after propensity score matching

	ER, No. (%)	OS, No. (%)	P value
Patients	65	65	
Mean age, years	70.7	70.7	.95
Male	51 (78.5)	49 (75.4)	.83
Smoking	21 (32.3)	22 (33.8)	1
Hypertension	59 (90.8)	61 (93.8)	.74
Dyslipidemia	34 (52.3)	36 (55.4)	.86
CAD	31 (47.7)	33 (50.8)	.86
COPD	34 (52.3)	30 (46.2)	.59
Diabetes	5 (7.7)	7 (10.8)	.76
Renal impairment	10 (15.4)	12 (18.5)	.81
Previous aortic surgery ^a	23 (35.4)	15 (23.1)	.17
Urgent/emergent	1(1.5)	3 (4.6)	.61

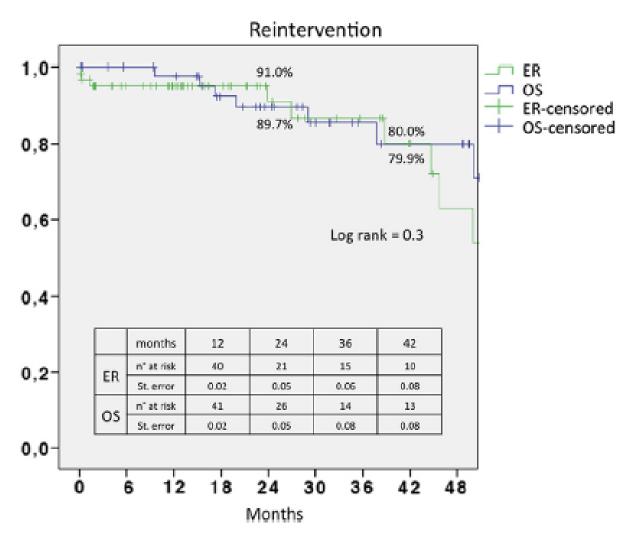
CAD, Coronary artery disease; COPD, chronic obstructive pulmonary disease; ER, endovascular repair; OS, open surgery.

^aIn the 65 ER patients, there were six infrarenal abdominal aortic aneurysms and 17 ascending aorta repairs; in the 65 OS patients, there were 8 abdominal aortic aneurysms, 4 ascending aorta/arch aneurysms, 2 thoracic aortic aneurysms, and 1 thoracoabdominal aortic aneurysm (TAAA).


J Vasc Surg 2016

Ciro Ferrer, MD, ^a Piergiorgio Cao, MD, FRCS, ^a Paola De Rango, MD, PhD, ^b Yamume Tshomba, MD, ^c Fabio Verzini, MD, PhD, FEBVS, ^b Germano Melissano, MD, ^c Carlo Coscarella, MD, ^a and Roberto Chiesa, MD, ^c Rome, Perugia, and Milan, Italy

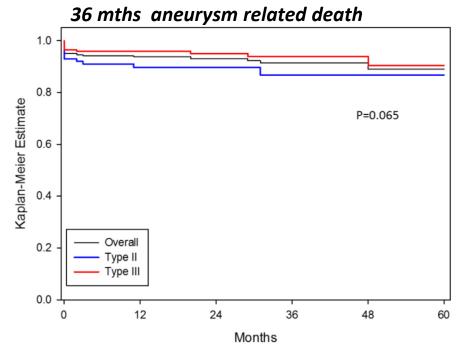
PERIOPERATIVE RESULTS	Group 1 N = 65 (%)	Group 2 N = 65 (%)	р
Composite endpoint	12 (18.5)	24 (36.9)	0.03
• Death	5 (7.7)	4 (6.2)	1
Spinal cord ischemia	8 (12.3)	13 (20)	0.34
- Paraplegia	6 (9.2)	7 (10.8)	1
• Dyalisis	6 (9.2)	8 (12.3)	0.78
- Permanent	1 (1.5)	1 (1.5)	1
 Respiratory complications 	0 (0)	8 (12.3)	0.006
ICU days	1.6 (0-12)	2.8 (1-13)	0.01
In-hospital days	6.3 (3-23)	16.3 (3-30)	<0.001

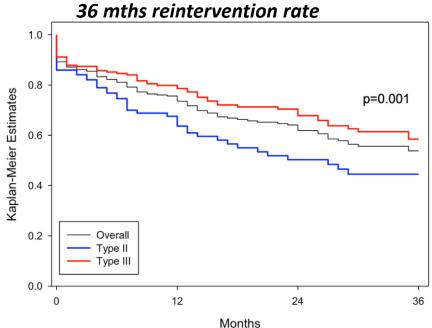

J Vasc Surg 2016

Ciro Ferrer, MD, ^a Piergiorgio Cao, MD, FRCS, ^a Paola De Rango, MD, PhD, ^b Yamume Tshomba, MD, ^c Fabio Verzini, MD, PhD, FEBVS, ^b Germano Melissano, MD, ^c Carlo Coscarella, MD, ^a and Roberto Chiesa, MD, ^c Rome, Perugia, and Milan, Italy

J Vasc Surg 2016

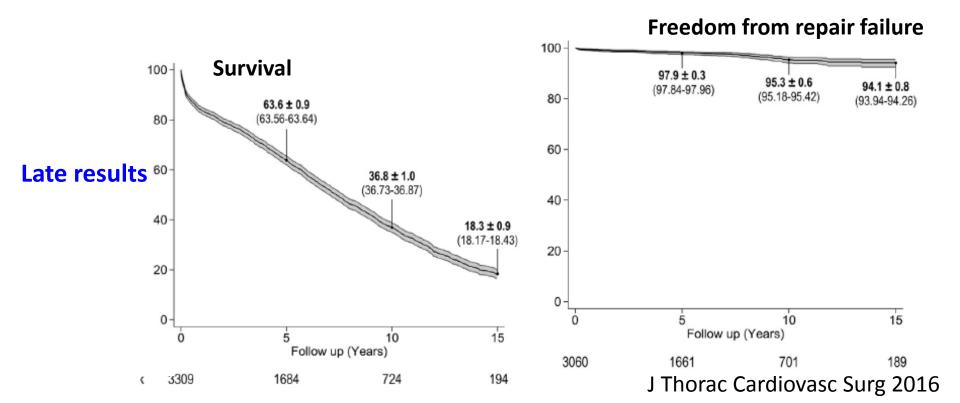
Ciro Ferrer, MD, a Piergiorgio Cao, MD, FRCS, Paola De Rango, MD, PhD, Yamume Tshomba, MD, Fabio Verzini, MD, PhD, FEBVS, Germano Melissano, MD, Carlo Coscarella, MD, and Roberto Chiesa, MD, Rome, Perugia, and Milan, Italy


Fenestrated and branched endovascular aneurysm repair outcomes for type II and III thoracoabdominal aortic aneurysms


Matthew J. Eagleton, MD, Matthew Follansbee, BS, Katherine Wolski, MPH, Tara Mastracci, MD, and Yuki Kuramochi, BScN, Cleveland, Ohio

354 pts (type II and III TAAA)

SCI 8.8% (permanent 4%) Periop Death 4.8%


Outcomes of 3309 thoracoabdominal aortic aneurysm repairs

Joseph S. Coselli, MD, a,d,e Scott A. LeMaire, MD, a,b,c,d,e Ourania Preventza, MD, a,d,e Kim I. de la Cruz, MD, a,d,e Denton A. Cooley, MD, Matt D. Price, MS, a,d Alan P. Stolz, MEd, a,d Susan Y. Green, MPH, a,d Courtney N. Arredondo, MSPH, and Todd K. Rosengart, MD, a,c,d,e

Early Results

2586 pts elective (type II and III TAAA)

SCI 3.95 (permanent paraplegia)
Periop death 8.2%

 Open repair is the gold standard for treatment of TAAA mostly in fit patients

In current well-balanced comparative series and in single large volume centers ER is associated with similar mortality and SCI if compared with OS

However learning curve and small cases load have not been taken in to account in the available literature on ER

We should perform endo surgery in fit patients, but adequate TEAM Work and Center experience is crucial.

The importance of the Learning Curve and

- 1 or 2 interventionalists with the technical skills of the team LEADER
- Double team (time saving, blood loss, early revscularization of lower limbs, percutaneus approach)
- Highly specialized anesthesiologist deeply involved in complex aortic surgery
- Highly specialised OR Nurses

Outcomes of 3309 thoracoabdominal aortic aneurysm repairs

Joseph S. Coselli, MD, a,d,e Scott A. LeMaire, MD, a,b,c,d,e Ourania Preventza, MD, a,d,e Kim I. de la Cruz, MD, a,d,e Denton A. Cooley, MD, Matt D. Price, MS, a,d Alan P. Stolz, MEd, a,d Susan Y. Green, MPH, a,d Courtney N. Arredondo, MSPH, and Todd K. Rosengart, MD, a,c,d,e

"Repairing TAAA poses substantial risks, particularly when the entire thoracoabdominal aorta (extent II) is replaced.

Nonetheless, our dat suggest that TAAA repair, when performed in experienced center, can produce respectable outcomes"