Innovation to Improve Outcomes in The Aortic Arch

Matt Thompson

MMT '12

XXXXXXX X X ***

Endovascular Solutions to Aortic Arch Disease

St George's VASCULAR INSTITUTE

MMT '12

XXXXXX X X X

Management of LSA

Left subclavian artery revascularization: Society for

Evidence poor

Recommend revascularisation in elective cases

Stronger recommendation in specific situations

Individualised decision in emergency cases

mamascript for which they may have a competition of inter J Vasc Surg 2010;52:655:705 0741-5214/\$36.00 Copyright © 2010 by the Society for Vascular Surgery. doi:10.1016/j.jvs.2010.07.008 imal landing zone 0, 9; zone 1, 17; zone 2, 52) with a hybrid approach further enlightens us on the importance of the LSA. The incidence of stroke was 0% in 35 patients who underwent LSA artery revascularization compared with 655

Medtronic Endovascular Thoracic Registry (MOTHER)

	Patients 1010	Years	Indication	
Valor	359	2003-11	TAA Test: TAA with low /mod risk (comparitor with OSR). Registry: as for test but not for comparison. High-risk :not suitable for OSR Talent	
Valor II	160	2006-14	TAA: candidate for OSR low/ mod risk. Valiant	
Instead	68	2002-7	Chronic type B dissection Talent	
Captivia	100	2010-13	All indications Valiant Captivia	
Virtue	100	2006-12	Acute and chronic type B dissection . Valiant	
SGVI	217	1999-2010	All indications Talent / Valiant	

Early Outcomes- LSA MOTHER Registry

	LSA Uncovered	LSA Covered Not revasc	LSA Covered Revasc	р
Number	537	322	143	
Death (%)	31 (5.8)	22 (6.8)	10 (7)	0.769
Stroke (%)	12 (2.2)	29 (9)	7 (4.9)	0.000
SCI (%)	27 (5)	13 (4)	2 (1.4)	0.155

Multiple Logistic Regression (30-day) - Stroke

Covariate (stroke)	P-value	OR	Upper Cl	Lower Cl
Female gender	0.024	2.4	1.1	5.3
Renal insufficiency	0.036	2.1	1.1	4
Previous CVA	0.013	2.9	1.3	6.5
Coverage of the LSA without revascularisation	0.002	3.3	1.6	7.2
Number of devices	0.000	1.2*	1.3	2.0

Mid Term Stroke TAA vs. TAD - MOTHER Registry

TAD: p = 0.28

MMT '12

XXXXXXX X X 30

MMT '12

XXXXXXX X X X

Medtronic Thoracic Branch Program

Design Goals :

- Seal in 10mm landing zone
- Conformability to inner curve

Considerations

Main graft to branch

- interface durability
- seal
- migration resistance
- branch distal seal
- Cannulation time

LSA Branch Thoracic Stent Graft

MMT '12

AATAATA A MA

Clinically required to facilitate therapy

 Movement of the arch poses issues of design, durability, and modelling

 Rigorous and robust pre-clinical study is essential for optimal device design

