Ventana Fenestrated System: Current Indications and Limitations

ANDREW HOLDEN MBChB, FRANZCR Associate Professor of Radiology, Auckland University School of Medicine Auckland City Hospital Auckland, New Zealand

CAUTION: Investigational device. Limited by Federal (or United States) law to investigational use. Not available for sale or marketing in the United States or abroad, including the European Economic Area.

Disclosures

Andrew Holden, MBChB, FRANZCR

For the 12 months preceding this CME activity, I disclose the following types of financial relationships:

Honoraria received from: Nil

Consulted for:

Abbott Vascular Laboratories Endologix Inc Cook Medical Systems 480 Biomedical

Held common stock in: Nil

Ventana Fenestrated System

In-situ customization with *offthe-shelf* availability for pararenal and juxtarenal abdominal aortic aneurysms

CAUTION: Investigational device. Limited by Federal (or United States) law to investigational use. Not available for sale or marketing in the United States or abroad, including the European Economic Area.

Ventana Fenestrated System

Proximal Scallop for SMA ______ preservation

For use with AFX unibody bifurcated stent graft • Anatomical Fixation

Bifurcation Preservation

Steerable fenestrations *insitu* to address broad range of anatomies

Pre-cannulated fenestrations with 6.5Fr sheaths

Device fully constrained during renal cannulation

Integrated XPAND[™] Renal Stent Grafts

Exposing the Renal Sheaths

Retract outer sheath until the R/O markers of the 6.5F renal sheaths are exposed 1-2cms blow the renal arteries Can retract down to the safety clip on the inner core

Cannulating the Renal Arteries

- A key feature of the Ventana device is that it is *fully* constrained while the renal arteries are cannulated
- This stable platform plus a range of shaped catheters
 allows cannulation of even difficult renal artery anatomies
- This is a *major* point of difference with this device

Advance Device to Deploy

 Device advanced so that the base of SMA scallop (RO marker) lies close to the SMA

Deploy Proximal Section

Proximal section deployed by advancing a pusher rod

Deploy Proximal Section

- Complete deployment in the lateral position
- May initially deploy the device a little high so that the RO marker partly covers the SMA
- Can easily pull the whole device down into perfect position

Deploy Distal Section

Outer sheath retracted to deploy the distal section

Covered Renal Stents Deployed and Flared

- Covered renal stents positioned so that ~ 5mm (2 stent elements) project into the aortic lumen
- Xpand Chromium cobalt stent with ePTFE covering
- Stents flared in the aortic section

- Unique Ventana feature
- Pushers allow the fenestrations to be advanced to the renal artery ostium and even into the renal artery
- This essentially creates a branch graft

- Multiple additional roles
- Facilitate horizontal orientation of flaring balloons

W 2300 : L 1768

Device Removed

Completion Angiography

Key Patient Selection Criteria

- AAA Sac Diameter ≥5.5cm or Rapidly Expanding
- Infra-renal Neck <15mm Length
- Infra-SMA Neck Length ≥15mm
- Diameter 18-34mm
- Renal Arteries at or below SMA 0-35mm
- Renal Arteries separated by between 90° and 210° and within ±30mm longitudinally
- Infra-SMA neck with an angle of $\leq 60^{\circ}$ to the aneurysm sac
- Renal Arteries 4-8mm diameter lumens
- Renal Ostial Stenosis < 70%

Key Patient Selection Criteria

- AAA Sac Diameter ≥5.5cm or Rapidly Expanding
- Infra-renal Neck <15mm Length
- Infra-SMA Neck Length ≥15mm
- Diameter 18-34mm
- Renal Arteries at or below SMA 0-35mm
- Renal Arteries separated by between 90° and 210° and within ±30mm longitudinally
- Infra-SMA neck with an angle of ≤60° to the aneurysm sac
- Renal Arteries 4-8mm diameter lumens
- Renal Ostial Stenosis < 70%

FIM Trial (N=15) Baseline Characteristics

Parameter	Result
Male gender	87%
Age, years	77 ± 5.6
Serum Creatinine, mg/dL	1.2 ± 0.2
COPD	60%
Hypertension	80%
Smoking History	60%
Sac Diameter, cm	5.9 ± 0.8
Aneurysm Type	93% Juxtarenal; 7% Pararenal
Neck Length: Infra-SMA / Infrarenal, mm	25 ± 9.9 6.9 ± 5.6
Infra-SMA Neck Diameter, mm	24 ± 2.2
L to R Renal Artery, $^{\circ}$ (Clockface)	147 ± 23

Primary Endpoint Results

- Treatment Success at 30 Days: 93% (14/15)
 - 100% Procedural Technical Success
 - Limb Occlusion, n=1 (6.7%)
 - Due to kink in bifurcated limb present intraprocedurally but not recognized at the time
 - FFXO day 26
 - No Type I or III Endoleaks
 - No Renal Stenosis or Occlusion

CT @ 6 Months

CT @ 12 Months

Other Results >30 Days to 16 Months

- Device Performance
 - No conversion to open or aneurysm rupture
 - No migration, stent fracture, graft failure
 - No Type I or III Endoleaks
 - No aneurysm sac expansion
 - eGFR preserved vs baseline; No renal infarcts
 - Small Type II Endoleaks in 3/15 patients (20%)
- Secondary Procedure
 - Renal Stenosis (n=1, 7 months post-op)
 - Reinforced renal stent

B

59mm X 54mm

6 Months

12 Months

Ventana: Current Plans

- "First on man" trial successfully completed
- US "Pivotal Trial" and OUS "Feasibility Trial" underway
- Ventana is easy to use with a limited number of devices being used in most anatomies
- Constrained device during renal artery cannulation a major advantage
- Fenestration pushers very useful

