Fusion Imaging, 3D Rotational Angiography or CO₂ for complex aortic endografting

> Krassi Ivancev The Royal Free Hospital, London

Pre-op MCTA

Fusion between pre-op MCTA and fluoroscopy

Spine visible on fluoroscopy

Spine from pre-op MCTA

Fusion between pre-op MCTA and fluoroscopy

Fusion between pre-op MCTA and intra-op C-arm CT

Coronal

Sagittal

Fusion between pre-op MCTA and intra-op C-arm CT

Fusion between pre-op MCTA and intra-op C-arm CT

Oblique reformatted cross-section orthogonal to the stent graft main axis

Pre-op MCTA

Fusion between intra-operative C-arm CTA and fluoroscopy

Fusion between intra-operative C-arm CTA and fluoroscopy

Limitations with current fusion imaging:

- Limited accessibility
- For complex EVAR, precision orientation is crucial. Fusion imaging does not yet provide the necessary accuracy

Distortion of anatomy due to device rigidity

Solution

- Mark the target vessels with catheters
- Use either CO₂ or diluted iodinated contrast medium for confirming land marks
- Use AP and lateral views
- This approach always provides precise orientation

Limitations of CO2

- Increased radiation dose
- CO₂ does not visualise posterior vessels
- May result in "vapour lock" when used excessively

Conclusion

- Fusion imaging is promising but needs further development
- CO₂ "vapour lock" can be avoided by limiting the dose to 100cc/10min
- The combination of CO₂ and diluted iodinated contrast provides adequate intra-operative imaging