Etude morphologique et fonctionnelle par IRM à très haut champ de modèles animaux de la maladie d'Alzheimer

Anne Bertrand Directeurs de thèse : Marc Dhenain, Youssef Wadghiri

URA CEA-CNRS 2210, MIRCen, Fontenay-Aux-Roses NeuroSpin, CEA, Saclay Center for Biomedical Imaging, NYULMC, New York

Maladie d'Alzheimer

Maladie d'Alzheimer

IRM 7T

Maladie d'Alzheimer

IRM 7T

Modèles animaux

Micro-MRI of cerebral aging in mouse lemur primates

MEMRI study of neuronal transport in mouse models of tauopathy and amyloidosis

Rationale

- Non-human primate model of aging
 - Cognitive alterations Bachevalier 1991
 - Age-related atrophy Peters 1996
 - Spontaneous Aβ deposits Struble 1985
 - Spontaneous tauopathy, Selkoe 1987

Small size and relatively fast aging

Study design

Ammon's horn & subiculum

- 12 formalin-fixed mouse lemur brains
 - 6 young (<5 years) and 6 old (>5 years)
 - Ex vivo staining by Gd-DOTA soaking

• Ex vivo MRI

- 7T clinical magnet
 Neurospin, CEA
- 3D Gradient Echo, 6h
- TR=200 ms, TE=20s
- Res. = 31x31x120 μ m

During aging in microcebus:

- No significant decrease of hippocampal volume
- Decrease in normalized Ammon's horn + subiculum volume
- Increase in normalized dentate gyrus volume

Side results: MRI detects hypointense spots in the brain of mouse lemurs

Correlation between

 $r^2 = 0.50$

50

age (months)

Number of dark spots

1mm

Better characterization of the mouse lemur as a model of aging and Alzheimer's pathology

- Age-related growth of the dentate gyrus
 - Not reported in humans and primates
 - Linked to local neurogenesis ?
- Cerebral microhemorrages
 - Not reported in other primates
 - Reminiscent of human microbleeds associated with aging
- Spontaneous Aβ deposits of mouse lemurs can be detected by MRI
 - Low incidence (1 among 6 old animals) : coherent with the litterature
 - Step towards detection of spontaneous Aβ deposits in humans

Bertrand et al., PLOS One, 2013

Micro-MRI of cerebral aging in mouse lemur primates

MEMRI study of neuronal transport in mouse models of tauopathy and amyloidosis

Bertrand et al. Current Med Im Reviews 2011

30 min

Analysis of signal intensity curves

Bertrand et al. Current Med Im Reviews 2011

Analysis of signal intensity curves

Bertrand et al. Current Med Im Reviews 2011

Micro-MRI of cerebral aging in mouse lemur primates

MEMRI study of neuronal transport in mouse models of tauopathy and amyloidosis

the JNPL3(P301L) line: a model of tauopathy

Curve profiles

Parameter analysis

Parameters are **all significantly affected** in 6 monthold Tg mice

*: p< 0.05 (Wilcoxon signed rank test); ## : p<0.01 (t-test)

Tmax is delayed

MEMRI parameters correlates with levels of tauopathy

MEMRI \longleftrightarrow Histology

A. Peak value correlates with somatic tau pathology (PHF1 antibody)

Correlation : r = -0.38 and p< 0.05 (Spearman correlation coefficient).

B. Peak value correlates with somatic tau pathology (MC1 antibody)

- In vivo detection of neuronal transport impairment related to the expression of humanmutated tau in mice
- Correlation between MEMRI parameters and abnormal tau expression
- MEMRI can be used as a preclinical biomarker of tauopathy

Bertrand et al. Neuroimage 2013

Micro-MRI of cerebral aging in mouse lemur primates

MEMRI study of neuronal transport in mouse models of tauopathy and amyloidosis

- the JNPL3(P301L) line: a model of tauopathy
- the 5XFAD line: an accelerated model of amyloidosis

WT- 5XFAD

Tg – 5XFAD

Normalized Signal Intensity

- Age-related impairment of neuronal transport in WT mice
 - Observed in aging rats, not mice

Frolkis 1997, Cross 2008

- Absence of neuronal transport impairment in 5XFAD mice
 - True acceleration ?
 - Excitotoxicity ?

Itoh Neuroscience 2008 Gobbo 2012 Understanding the mechanisms of Alzheimer's disease

Differences betwen AD lesions:

- In vivo neuronal transport is altered in the presence of tauopathy
- In vivo neuronal transport is apparently increased in an accelerated mouse model of amyloidosis
 - True acceleration ?
 - Excitotoxicity ?

Understanding the mechanisms of normal aging

- First report of a growth of the dentate gyrus during aging
 - Higher resistance to aging process ?
 - Active neurogenesis ?
- First report of an age-related impairment of neuronal transport in WT mice

Marc Dhenain (MIRCEn-URA 2210)

Alexandra Petiet Audrey Kraska Fanny Petit Adrien Pasquier Olène Dorieux Nelly Joseph-Mathuhrin Oliviero Gobbo Diane Houitte Martine Guillermier Mathieu Santin

Neurospin

Gaelle Louin Jean-Sébastien Raynaud Christopher Wiggins

Acknowledgments

Wadghiri Lab
 Youssef Z Wadghiri
 Umer Khan
 Minh D Hoang
 Ben W Little
 Lindsay K Hill

Helpern Lab
 Dmitry Novikov

- Sigurdsson Lab

 Einar Sigurdsson
 Pavan Krishnamurthy
 Hameetha Banu
 Allal Boutajangout
- Turnbull Lab Daniel H Turnbull Kamila Szulc Ben Bartelle Giselle Suero

Financial supports:

- Société Française de Radiologie
- Société Française de Neuroradiologie
- Ministère des Affaires Etrangères (EGIDE-Lavoisier)
- Fondation Philippe
- NIH AG032611
- AG020197
- The Alzheimer's Association
- The American Heatlh Assistance Foundation A2008-155