41<sup>ème</sup> CONGRÈS ANNUEL **M** de la **Société Française** de **NeuroRadiologie** 



3-5 avril 2014 Novotel Paris Tour Eiffel nouveau lieu www.sfnrcongres.net

# Optimisation d'une séquence MPRAGE à 7T pour visualiser l'anatomie interne du thalamus

### Thomas Tourdias <sup>1,2</sup>, M Saranathan <sup>2</sup>, I Levesque <sup>2</sup>, J Su <sup>2</sup>, B Rutt <sup>2</sup>

 (1) Service de NeuroImagerie Diagnostique et Thérapeutique, CHU Bordeaux, Université de Bordeaux
(2) Radiological Sciences Laboratory, Stanford University, CA, USA









# Rationnel

Visualiser l'anatomie interne du thalamus

Organe relai

# Complexité anatomique, nombreux noyaux thalamiques





Morel et al. J Comp Neurol 1997; 387:588-630

## Visualiser l'anatomie interne du thalamus

 Cibles pour la stimulation cérébrale profonde (tremblement essentiel, douleurs neuropathiques, sous type de Parkinson)

# Rationnel

Visualiser l'anatomie interne du thalamus

- ELAIR T2 SE T1 GRE Difficile en pratique quotidienne Variation du contenu de myéline d'un noyau à l'autre D 3.6 Intérêt d'une séquence de type
  - T1 inversion récupération







Magnotta et al. Neuroimage 2000

# **Hypothèse**

### *Visualisation de l'anatomie interne du thalamus à 7Tesla en optimisant une séquence de type T1 MPRAGE*

Gain de signal Gain de contraste





7Tesla, GE, MR950

# RésultatsMesures de T1 →Optimisation →Validation

Quantification des valeurs de T1 en IR-FSE (5 temps d'inversion), fit mono exponentiel (n=5 sujets).



Mesures de T1  $\rightarrow$ 

#### Optimisation



#### Séquence MPRAGE - Principe





Simulation (approche théorique) Expérimentation (approche empirique)

### Mesures de T1 $\rightarrow$ Optimisation $\rightarrow$ Validation



Optimisation  $\rightarrow$  Validation







# RésultatsMesures de T1 →Optimisation →Validation

Inversion time (TI, ms)

#### **Coronal Right Thalamus**



Mesures de T1  $\rightarrow$ 

#### Optimisation



#### Séquence MPRAGE - Principe





Simulation (approche théorique) Expérimentation (approche empirique)

#### Optimisation

#### → Validation





Mesures de T1  $\rightarrow$ 

#### Optimisation



#### Séquence MPRAGE - Principe





Simulation (approche théorique) Expérimentation (approche empirique)

Optimisation

 $\rightarrow$ 

### Validation



**α=2°** 



















### $\rightarrow$ Optimisation $\rightarrow$ Validation



### Optimisation $\rightarrow$ Validation



Mesures de T1  $\rightarrow$ 

#### Optimisation $\rightarrow$

Validation



•Contraste entre noyaux adjacents

•Fines bandes hypointenses autour des noyaux: fine couche de myéline décrite histologiquement





# Conclusion

Optimisation

#### Acquisition coronale



Reconstruction axiale



Acquisition coronale



Reconstruction axiale













### **MERCI** !

#### Service de Neuroimagerie: Pr Dousset, Bordeaux

X.Barreau; J.Berge; E.De Roquefeuil; M.Durieux; S. Molinier; P.Ménégon

Radiological Sciences Laboratory, "Ultra high Field Program": Pr RUTT, Stanford M Saranathan; I Levesque; M Zeineh; J Su; M Khalighi; J Mcnab; S Winkler

### Neurology departments, Stanford

M Han; G Kerchner

#### **FINANCIAL SUPPORT** ARSEP (Association pour la Recherche contre la Sclérose en Plaques;

CHU de Bordeaux; Fondation Bordeaux Université; LabEx TRAIL (Translational Research and Advanced Imaging Laboratory); Institut Servier; France-Stanford Center for Interdisciplinary Studies