

40^{ème} CONGRÈS ANNUEL de la <mark>Sociélé Française</mark> de **NeuroRadiologie**

Imagerie du Cortex à 7 Tesla

Thomas Tourdias

 (1) Service de NeuroImagerie Diagnostique et Thérapeutique, CHU Bordeaux, Université de Bordeaux
 (2) Radiological Sciences Laboratory, Stanford University, CA, USA

Stanford University School of Medicine

Radiological Sciences Laboratory

La « démographie » des aimants 7T

Brian Rutt, Stanford Ultra High Field Program

7T, GE, MR950, Stanford

- 1. Les atouts du 7T pour l'imagerie du cortex
- 2. Les challenges du 7T pour l'imagerie du cortex
- **3.** Le cortex normal à 7T
 - Micro-anatomie corticale
 - Fonction
- 4. Applications pathologiques
 - Plaques corticales et sclérose en plaques
 - Segmentation de sous volumes hippocampiques

Les atouts du 7T pour l'imagerie du cortex : Gain de signal

7T

Zwanenburg et al. Eur Radiol 2010; 20:915-922

Les atouts du 7T pour l'imagerie du cortex : Gain de signal → Gain en résolution spatiale

•Epaisseur corticale ≈ 2.5 mm (1 mm à 4 mm)

7T - 1 mm iso

7T - 0.5 mm iso

Les atouts du 7T pour l'imagerie du cortex :

Imagerie parallèle – Effet de susceptibilité

✓ Meilleures performances de l'imagerie parallèle

Wiesinger et al. MRM 2004; 52:953-964

✓ Augmentation de l'effet de susceptibilité: augmentation de l'effet BOLD

- 1. Les atouts du 7T pour l'imagerie du cortex
- 2. Les challenges du 7T pour l'imagerie du cortex

Les contraintes du 7T Inhomogénéité de B₀

Prédomine aux Interfaces Air / Tissue
Importance du «Shim»

MPRAGE White matter null

MPRAGE White matter null + Shim

Les contraintes du 7T Inhomogénéité de B1

Jonathan Lu, Mehdi Khalighi, Stanford

Pulses RF ou séquence "B₀/B₁ insensitive": Hyperbolic secant adiabatic pulse
Compensation des inhomogénéités directe ou lors du post traitement
Antenne émettrice multicanaux.

Les contraintes du 7T

Specific Absorbtion Rate: SAR

Pulses RF ou séquence "B0/B1 insensitive": Hyperbolic secant adiabatic pulse
SAR augmente ~ B₀²

•Surveillance du SAR en temps réel

Les contraintes du 7T

Modifications des temps de relaxation

Diminution du T2 et T2*
Augmentation des temps de relaxation T1

T1 map IR FSE at 5 TI

Les contraintes du 7T

Modifications des temps de relaxation – Exemple du FLAIR

Visser *et al.* MRM 2010; 64:194-202 Zwanenburg *et al.* Eur Radiol 2010; 20:915-922

- 1. Les atouts du 7T pour l'imagerie du cortex
- 2. Les challenges du 7T pour l'imagerie du cortex

- 1. Les atouts du 7T pour l'imagerie du cortex
- 2. Les challenges du 7T pour l'imagerie du cortex

- 1. Les atouts du 7T pour l'imagerie du cortex
- 2. Les challenges du 7T pour l'imagerie du cortex
- **3.** Le cortex normal à 7T
 - Micro-anatomie corticale
 - Fonction
- 4. Applications pathologiques
 - Plaques corticales et sclérose en plaques
 - Segmentation de sous volumes hippocampiques

Micro-anatomie corticale

1.5T: T2*

7T: T2*

Micro-anatomie corticale

Micro-anatomie corticale

frontiers in HUMAN NEUROSCIENCE

published: 18 February 2011 doi: 10.3389/fnhum.2011.00019

Microstructural parcellation of the human cerebral cortex – from Brodmann's post-mortem map to *in vivo* mapping with high-field magnetic resonance imaging

Stefan Geyer*, Marcel Weiss, Katja Reimann, Gabriele Lohmann and Robert Turner

Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

Micro-anatomie corticale

Fukunaga et al. PNAS 2010; 107:3834-39

T_2^* mapping and B_0 orientation-dependence at 7 T reveal cyto- and myeloarchitecture organization of the human cortex

J. Cohen-Adad ^{a,b,*}, J.R. Polimeni ^{a,b}, K.G. Helmer ^{a,b}, T. Benner ^{a,b}, J.A. McNab ^{a,b}, L.L. Wald ^{a,b,c}, B.R. Rosen ^{a,b}, C. Mainero ^{a,b}

^a A.A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, USA

^b Harvard Medical School, Boston, MA, USA

^c Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA, USA

Neuroimage 2012

Geyer et al. Front in Hum Neurosci 2011; 18:5

Micro-anatomie corticale

Jaco J. M. Zwanenburg, PhD Jeroen Hendrikse, MD, PhD Peter R. Luijten, PhD

Generalized Multiple-Layer Appearance of the Cerebral Cortex with 3D FLAIR 7.0-T MR Imaging¹ Reliefogy: Volume 262: Number 3—March 2012 • radiology.rsna.org

Micro-anatomie corticale

Zwanenburg et al. ISMRM 2009; abstract 2761

Liseré périphérique hyperintense

- •Artefact ?
- •Méninges ?
- •Couche corticale externe (Couche I) ?

- 1. Les atouts du 7T pour l'imagerie du cortex
- 2. Les challenges du 7T pour l'imagerie du cortex
- **3.** Le cortex normal à 7T
 - Micro-anatomie corticale
 - Fonction
- 4. Applications pathologiques
 - Plaques corticales et sclérose en plaques
 - Segmentation de sous volumes hippocampiques

IRM fonctionnelle ultra haute résolution

Van der Zwaag et al. Neuroimage 2009; 47:1425-1434

IRM fonctionnelle ultra haute résolution

Le cortex normal à 7T IRM fonctionnelle ultra haute résolution

Laminar analysis of 7 T BOLD using an imposed spatial activation pattern in human V1

Jonathan R. Polimeni^{a,*}, Bruce Fischl^{a,b}, Douglas N. Greve^a, Lawrence L. Wald^{a,c}

^a Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Bldg 149 Thirteenth St., Suite 2301, Charlestown, MA 02129, USA

^b Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, USA
^c Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA

- 1. Les atouts du 7T pour l'imagerie du cortex
- 2. Les challenges du 7T pour l'imagerie du cortex
- **3.** Le cortex normal à 7T
 - Micro-anatomie corticale
 - Fonction
- 4. Applications pathologiques
 - Plaques corticales et sclérose en plaques
 - Segmentation de sous volumes hippocampiques

Sclérose en plaque et atteinte corticale Difficultés à 1.5T et 3T

- Faible contenu en myéline de la SG adjacente
- Moins d'inflammation que dans les lésions de la SB
- Absence de rupture de la BHE

Double Inversion Récupération (DIR) à 1.5T et 3T

- Accord complet inter lecteurs ~ 20%
- Sensibilité ~ 18%

Geurts *et al.* Neurology 2011; 76:418-24 Steewann *et al.* Neurology 2012; 78:302-8

Pb. de résolution

en contraste

Sclérose en plaque et atteinte corticale Apport potentiel du 7T – séquence T2*

Sclérose en plaque et atteinte corticale Apport potentiel du 7T – séquence T2*

	7-T MRI		Pathology	Pathology	
	%	(n)	(study 1*), %	(study 2*), %	
All types	100	(199)	100	100	
Typel	36.2	(72)	34	38	
Type II	13.6	(27)	16	18	
Type III/IV	50.2	(100)	50	44	

Lucchinetti et al. NEJM 2011; 365:2188-97

Mainero *et al.* Neurology 2009; 73:941-48

	3T – DIR	7T- FLASH T2*
Nombre de lésions corticales	N=18	N=88
Reproductibilité inter observateur (k)	K=0.12	K=0.97

Nielsen et al. JMRI 2012; 35:537-42

Cohen-Adad et al. Neuroimage 2011; 57:55-62

Sclérose en plaque et atteinte corticale

Apport potentiel du 7T – séquences avec suppression tissulaire

de Graaf et al. Eur Radiol 2012; [Epub ahead of print]

MPRAGE with WM suppresion - 0.8 x 0.8 x 0.8mm - 200 slices (whole brain) - ≈8 min

- 1. Les atouts du 7T pour l'imagerie du cortex
- 2. Les challenges du 7T pour l'imagerie du cortex
- **3.** Le cortex normal à 7T
 - Micro-anatomie corticale
 - Fonction
- 4. Applications pathologiques
 - Plaques corticales et sclérose en plaques
 - Segmentation de sous volumes hippocampiques

Maladie d'Alzheimer Hypothèse temporelle

Une atteinte « locale » plus précoce que l'atteinte « globale »

Slide courtesy of Dr G Kerchner, Stanford

Maladie d'Alzheimer Couche synaptique de CA1

Scheff et al. Neurology 2007; 68:1501-08

Maladie d'Alzheimer Couche synaptique de CA1

T2 FSE - 0.2 x 0.2 x 1.5mm – Gating respiratoire - \approx 10 min

Kerchner et al. Neuroimage 2012; 63:194-202

Maladie d'Alzheimer

Couche synaptique de CA1

	AD (n = 14)	NC (n = 16)	Р
Age	66 ± 8	67 ± 5	0.56
Normalized Total Hippocampal Volume	4.5±1	5.1 ± 0.6	0.15
Normalized CA1-SRLM thickness	3.9 ± 0.9	5.0±1	0.003
Normalized CA1-SP thickness	14.8±4.2	15.9 ± 1.5	0.8
Absolute CA1-SRLM thickness (mm)	0.43 ± 0.1	0.58 ± 0.1	0.001
Absolute CA1-SP thickness (mm)	1.7 ± 0.5	1.8 ± 0.2	0.19

Kerchner *et al.* Neuroimage 2012; 63:194-202 Kerchner *et al.* Neurology 2010; 75:1381-87

Maladie d'Alzheimer

Couche synaptique de CA1

	AD (n = 14)	NC (n = 16)	Р
Age	66 ± 8	67 ± 5	0.56
Normalized Total Hippocampal Volume	4.5±1	5.1 ± 0.6	0.15
Normalized CA1-SRLM thickness	3.9 ± 0.9	5.0±1	0.003
Normalized CA1-SP thickness	14.8 ± 4.2	15.9 ± 1.5	0.8
Absolute CA1-SRLM thickness (mm)	0.43 ± 0.1	0.58 ± 0.1	0.001
Absolute CA1-SP thickness (mm)	1.7 ± 0.5	1.8 ± 0.2	0.19

Kerchner *et al.* Neuroimage 2012; 63:194-202 Kerchner *et al.* Neurology 2010; 75:1381-87

Slide courtesy of Dr G Kerchner, Stanford

Conclusion

Un outil pour une meilleure compréhension du cortex normal

Et pathologique...

SEP

Alzheimer et hippocampe Sclérose mésiale Dysplasie corticale focale

. . . .

Radiological Sciences Laboratory : "Ultra high Field Program"

Brian Rutt Manoj Saranathan Ives Levesque Michael Zeineh Jaon Su Medhi Khalighi Jennifer Mcnab Simone Winkler

>Neurology departments Geoff Kerchner

May Han

FINANCIAL SUPPORT ARSEP (Association pour la Recherche contre la Sclérose en Plaques;

CHU de Bordeaux; Fondation Bordeaux Université; LabEx TRAIL (Translational Research and Advanced Imaging Laboratory); Institut Servier; France-Stanford Center for Interdisciplinary Studies