INTERET DIAGNOSTIQUE DES SEQUENCES IRM DYNAMIQUES DE PERFUSION ET DE DIFFUSION DANS LE BILAN DES TUMEURS PAROTIDIENNES

ETUDE RETROSPECTIVE CHEZ 30 PATIENTS

N. Hoarau, J. Gabrillargues, B. Claise, B. Jean, E. Chabert, L. Gilain, JL. Michel

Principal: intérêt des séquences IRM dynamiques de perfusion dans la caractérisation des tumeurs parotidiennes ?

Secondaires:

- Performance diagnostique de l'analyse de la perfusion combinée à celle des séquences morphologiques classiques?
- Apport de la diffusion en complément de la perfusion et des séquences morphologiques ?

Matériels et méthodes:

Patients

- Etude rétrospective portant sur **30** patients ayant bénéficié d'une IRM pré-opératoire avec **perfusion** entre Août 2010 et Juin 2012 puis ayant été opéré par la suite.
- Lecture des IRM par un radiologue sénior expérimenté, accompagné d'un radiologue junior.
- Puis recueil du compte rendu anatomopathologique et consultation du dossier patient.

<u>Matériels et méthodes</u>: Protocole d'acquisition

Séquences systématiques:

- Ax T1 FSE
- Ax T2 FSE fatsat
- Séquences dynamiques T1 après injection de gadolinium constituant la séquence de perfusion
- □ 3D T1 ou ax T1 gado fat sat après injection
- 15 des 30 patients ont également bénéficié d'une séquence de diffusion.

Matériels et méthodes:

Données de l'IRM morphologique

- Taille de la lésion en mm
- Siège
- Multifocalité, Bilatéralité
- Régularité des contours
- Présence de cloisons et/ou septa
- Plages kystiques
- Invasion des structures adjacentes
- Présence d'adénomégalies

- Signal T2, Homogénéité
- Signal T1 fat-sat après injection, Homogénéité
- Prise de contraste (absente/cloisons,septa/modérée/maje ure/périphérique)

Diagnostic IRM 1 :

- adénome
- cystadénolymphome
- tumeur maligne
- lésion kystique

<u>Matériels et méthodes</u>: Données de la perfusion

Classification des TICs selon Lechner Goyault et al.(1) et Yabuuchi et al.(2)

Diagnostic IRM 2: analyse de la perfusion ET de l'IRM morphologique

<u>Matériels et méthodes</u>: Analyses statistiques

- Diagnostic IRM 1: analyse seule de la morphologie
- Diagnostic IRM 2 : analyse de la perfusion combinée à la morphologie.
- Perfusion seule: analyse en se basant sur un principe simplifié:
 - Courbe type A: adénome pléomorphe
 - Courbe type B: cystadénolymphome
 - Courbe type C: tumeur maligne
 - Courbe type D : lésion kystique

Résultats descriptifs:

Anatomopathologie

- Population: 18 hommes et 12 femmes.
- Moyenne d'âge de 56 ans
- Distribution des lésions:
 - Bénignes: 26
 - Malignes: 4

Type de lésion		nombre de cas
tumeurs bénignes	adénome pléomorphe	13
	cystadénolymphome	13
tumeurs malignes	cystadénocarcinome	1
	lymphome du MALT	1
	lymphome B	2

	DIAGNOSTIC HISTOLOGIOUE			
	Adénome pléomorphe	Cystadéno- lymphome	Tumeur maligne	Р
Sexe, n (%) Homme Femme	6 (46.2) 7 (53.8)	<u>11 (84.6)</u> 2 (15.4)	1 (25.0) 3 (75.00)	0.044
Tabac, n (%) Non Oui	12 (92.3) 1 (7.7)	6 (46.2) 7 (53.8)	4 (100.0) 0 (0.0)	0.018
Age, Moyenne (écart-type) Médiane (Min-Max)	49.1 (17.5) 48.7 (14.2 – 78.7)	57.7 (11.1) 57.0 (42.6 – 82.8)	72.8 (8.4) 71.2 (64.4 - 84.3)	0.02
Cloison septa, n (%) Oui Non	0 (0.0) 13 (100.0)	9 (69.2) 4 (30.8)	1 (25.0) 3 (75.0)	<0.001
Homogénéité signal T1,n(%) Homogène Hétérogène	12 (92.3) 1 (7.7)	6 (46.2) 7 (53.8)	3 (75.0) 1 (25.0)	0.03
Signal T2, n (%) hyposignal isosignal hypersignal modéré hypersignal franc	0 (0.0) 0 (0.0) 2 (15.4) 11 (84.6)	2 (15.4) 1 (7.7) 9 (69.2) 1 (7.7)	0 (0.0) 1 (25.0) 2 (50.0) 1 (25.0)	<0.001
Prise de contraste, n (%) Cloisons,périphérie Modérée Majeure	0 (0.0) 2 (15.4) 11 (84.6)	8 (61.5) 4 (30.8) 1 (7.7)	1 (25.0) 1 (25.0) 2 (50.0)	<0.001

	DIAGNOSTIC HISTOLOGIQUE			
	Adénome pléomorphe	Cystadéno- lymphome	Tumeur maligne	р
Perfusion, n (%) Type A Type B Type C Type D	13 (100.0) 0 (0.0) 0 (0.0) 0 (0.0)	0 (0.0) 9 (69.2) 3 (23.1) 1 (7.7)	0 (0.0) 0 (0.0) 3 (75.0) 1 (25.0)	<0.001
ADC, Moyenne (écart-type) Médiane (Min-Max)	2.01 (0.44) 2.05 (1.44 – 2.59)	1.25 (0.39) 1.28 (0.75 – 1.68)	1.13 (0.42) 1.13 (0.83 – 1.43)	0.03

<u>Résultats</u>: Concordance des diagnostics 1, 2 et de la perfusion d'analyse simplifiée versus histologie.

Paramètres	Kappa (SE)	Accuracy
Diagnostic IRM 1	0.42 (0.11)	56.67%
Diagnostic IRM 2	0.88 (0.13)	93.33%
Perfusion simplifiée	0.77 (0.13)	83.33%

Discussion

- Objectif principal :
 - performance de la perfusion seule démontrée,
 - mais analyse trop simplifiée car aucune courbe n'est spécifique à 100% d'un type de lésion.
- Objectif secondaire:
 - meilleure performance diagnostique en combinant la perfusion à la morphologie.

Discussion: Cloisons/septa??

- Que penser de cet aspect de cloisons?
- •Cloisons réelles?
- Pseudo cloisons macroscopiques liées à l'aspect microscopique « slit like » des cavités kystiques de cystadénolymphome?

Discussion

- Limite: faible échantillon notamment pour les tumeurs malignes
- Cas du cystadénocarcinome: DG IRM 1 et DG IRM 2 en faveur d'une lésion kystique sans contingent solide objectivable en IRM

5

difficulté diagnostique entre une lésion kystique d'allure bénigne et un carcinome à fort contingent kystique?

Apport de la diffusion?

- Valeurs élevées de l'ADC pour les adénomes
- Valeurs basses de l'ADC du lymphome ET du cystadénolymphome.
- Valeurs intermédiaires pour les carcinomes.

Discussion:

	Adénome Pléomorphe	Cystadéno lymphome	Lymphome	Carcinome	Nombre de patients
Notre étude	2,01 ± 0,44 (n=5)	1,25 ± 0,29 (n=7)	0,8 (n=1)	1,43 (n=1)	14
Lechner Goyault et al. (1)	1,87 ± 0,18	0,84 ± 0,18	0,83 ± 0,16	0,83 ± 0,16	60
	(n=30)	(n=12)	(n=3)	(n=13)	
lkeda et al. (3)	/	0,96 ± 0,13 (n=19)	/	1,19 ± 0,19 (n=17)	36 (p<0,01)
Wang et al. (4)	/	/	0,66 ± 0,17 (n=13)	1,13 ± 0,43 (n=36)	21 (p<0,01)
Habermann et al. (5)	2,09 ± 0,16	0,89 ± 0,16	/	1,14 ± 0,18	136
	(n=43)	(n=32)		(n=49)	
Yabuuchi et al. (2)	1,92 ± 0,36 (n=20)	0,86 ± 0,16 (n=14)	0,88 ± 0,07 (n=2)	1,12 ± 0,41 (n=12)	47 (50 lésions)

Si Yabuuchi et al. (2) ont proposé un arbre décisionnel pour les courbes B et C en incluant des cut-off d'ADC, peut être que la morphologie serait également pourvoyeuse d'éléments discriminants à intégrer dans un arbre décisionnel diagnostique?

Conclusion

- Séquence de perfusion : essentielle dans la caractérisation des tumeurs parotidiennes.
- La performance diagnostique est améliorée lorsqu'on combine perfusion et analyse morphologique.
- Diffusion: informative mais doit rester complémentaire et non réalisée comme seule modalité d'étude.
- Nécessité d'un plus grand nombre de patients mais pathologie rare et grande variété histologique.

Bibliographie

- Lechner Goyault J, Riehm S, Neuville A, Gentine A, Veillon F. Interest of diffusion-weighted and gadolinium-enhanced dynamic MR sequences for the diagnosis of parotid gland tumors. J Neuroradiol. 2011;38:77-89
- 2. Yabuuchi H, Matsuo Y, Kamitani T, Setoguchi T, Okafuji T, Soeda H, et al. Parotid Gland Tumors: Can Addition of Diffusion-weighted MR Imaging to Dynamic Contrast-enhanced MR Imaging Improve Diagnostic Accuracy in Characterization?. Radiology. 2008;249(3):909-16.
- 3. Ikeda M, Motoori K, Hanazawa T, Nagai Y, Yamamoto S, Ueda T, et al. Warthin Tumor of the Parotid Gland: Diagnostic Value of MR Imaging with Histopathologic Correlation. American Journal of Neuroradiology. 2004;25(7):1256 -1262.
- 4. Wang J, Takashima S, Takayama F, Kawakami S, Saito A, Matsushita T, et al. Head and Neck Lesions: Characterization with Diffusion-weighted Echo-planar MR Imaging1. Radiology. 2001;220(3):621-30.
- 5. Habermann CR, Arndt C, Graessner J, Diestel L, Petersen KU, Reitmeier F, et al. Diffusion-Weighted Echo-Planar MR Imaging of Primary Parotid Gland Tumors: Is a Prediction of Different Histologic Subtypes Possible? AJNR Am J Neuroradiol. 2009 3;30(3):591-6.

Merci pour votre attention.