

9th Congress Edition Novotel PARIS Tour Eiffel

Genetic and PVCs

Dr Gabriel LAURENT MD, PhD CHU DIJON

www.rhythmcongress.com

Disclosure

Speaker name:

.Gabriel LAURENT

I do not have any potential conflict of interest regarding this presentation

Cardiac chanelopathies

- Long QTS
- Short QTS
- BRS
- CPVT
- ERS (Early repolarization Sd)
- MEPPC syndrome

Cardiomyopathies

- ARVC
- HCM

Mélanie 1984

- PVCs since 2002 and syncopes:
 - No structural heart disease
 - Excercice test : « stopped prematurely because of numerous and polymorphic PVCs »
 - Coronaro-angiography: normal
 - <u>Nadolol</u> 40mg per day in 2010 (hypotension)
 - Genetic testing in 2011
- Cousin: SCD at 20 years of age

Holter monitoring on medication 2011

A man and the source of the so

January 2012

- SCD while exercising (jogging)
- Cardioverted 20 times by paramedics
- Mutation: RyR2.

PVCs in CPVT

- The clinical manifestations of CPVT usually occur in the first decade of life and are prompted by physical activity or emotional stress.
- Diagnosis is challenging because patients have a normal ECG and echocardiogram, therefore an exercise stress test that elicits VA (bidirectional PVCs or polymorphic PVCs/VT) is recommended to establish the diagnosis.

Europace (2015) **17**, 1601–1687 doi:10.1093/europace/euv319

Recommendations	Class ^a	Level ^b
CPVT is diagnosed in the presence of a structurally normal heart, normal ECG and exercise- or emotion-induced bidirectional or polymorphic VT.	I	С
CPVT is diagnosed in patients who are carriers of a pathogenic mutation(s) in the genes <i>RyR2</i> or <i>CASQ2</i> .	I	С

The following lifestyle changes are recommended in all patients with a diagnosis of CPVT: avoidance of competitive sports, strenuous exercise and stressful environments.	I	с
Beta-blockers are recommended in all patients with a clinical diagnosis of CPVT, based on the presence of documented spontaneous or stress-induced VAs.	I	с
ICD implantation in addition to beta-blockers with or without flecainide is recommended in patients with a diagnosis of CPVT who experience cardiac arrest, recurrent syncope or polymorphic/bidirectional VT despite optimal therapy.	I	с
Elecainide should be considered in addition to beta-blockers in patients with a diagnosis of CPVT who experience recurrent syncope or oolymorphic/bidirectional VT while on beta-blockers, when there are risks/ Left cardiac sympathetic denervation may be considered in patients with a diagnosis of CPVT who experience recurrent syncope or polymorphic/	lla	с
Didirectional VT/several appropriate CD shocks while on beta-blockers or beta-blockers plus flecainide and in batients who are intolerant or have contraindication to beta-blockers.	ШЬ	C

GIGSS BOTOL

recommendations

Multifocal Ectopic Purkinje-Related Premature Contractions

A New SCN5A-Related Cardiac Channelopathy

Gabriel Laurent, MD, PHD,* Samuel Saal, MD,† Mohamed Yassine Amarouch, PHD,‡§|| Delphine M. Béziau, MSC,‡§|| Roos F. J. Marsman, MSC,¶ Laurence Faivre, MD, PHD,† Julien Barc, PHD,‡|| Christian Dina, PHD,‡|| Geraldine Bertaux, MD,* Olivier Barthez, MD,* Christel Thauvin-Robinet, MD, PHD,† Philippe Charron, MD, PHD,# Véronique Fressart, MD, PHD,** Alice Maltret, MD,†† Elisabeth Villain, MD,†† Estelle Baron, BA,‡|| Jean Mérot, PHD,‡§|| Rodolphe Turpault, PHD,‡‡|| Yves Coudière, PHD,‡‡|| Flavien Charpentier, PHD,‡§||§§ Jean-Jacques Schott, PHD,‡||§§ Gildas Loussouarn, PHD,‡§|| Arthur A. M. Wilde, MD, PHD,¶ Jean-Eric Wolf, MD, PHD,* Isabelle Baró, PHD,‡§|| Florence Kyndt, PHARMD, PHD,‡|| |||| Vincent Probst, MD, PHD‡||§§

Dijon, Nantes, and Paris, France; and Amsterdam, the Netherlands

Remarkably constant phenotype

- "Chaotic" ECGs, rare narrow sinus or junctional beats competing with various complexes polymorphic PVCs/NSVT
- Numerous PVCs with various RBBB patterns (right to left axis variations), and /or LBBB patterns.
- <u>Overdrive suppression of the PVCs during exercise</u> <u>test</u>
- No QT prolongation or ST-segment elevation.
- Five patients affected by syncope or presyncope,
- SCD reported in 5 :4 month-, 11 year-old and 3 adults (29-71)

Clinical data of the affected family members

Detter t	QTc	Condor	Furnations	NSVT+	Total PVC/ 24 h	LVEF Before Medication (%)	Atriai Arrhythmia	PVC Mombot
Family 1	(ms)~	Gender	Symptoms		2711	modeation (70)	Annyanna	morphor
Family 1		м	SD	_	_	_	_	_
1.1	423	F	Syncope	No	62,000	73	Paroxysmal atrial arrhythmia	R
11.4	358	F	Dyspnea	Yes	>25,000	35	No	R and L
II.6	426	F	Dyspnea	No	_	59	No	_
11.7	362	м	Dyspnea, SD	No	_	47	No	_
11.8	391	м	Syncope	No	_	60	No	_
111.1	361	F	Syncope	Yes	>50,000	32	Paroxysmal atrial arrhythmia	R and L
111.2	365	F	No	No	_	60	No	_
III.6	380	м	Palpitations	Yes	>25,000	47	No	R and L
111.7	360	м	Dyspnea	No	>25,000	67	No	R and L
111.9	407	F	No	No	200	_	No	no
111.11	413	м	No	No	11	_	No	no
111.12	_	м	SD	_	_	_	No	_
Family 2								
1.2	_	F	_	_	_	_	_	_
11.1	410	м	Palpitations	_	_	_	No	_
11.3	420	м	SD	_	_	_	Atrial flutter	_
111.1	405	м	No	No	18,000	60	No	L
111.2	408	м	Presyncope	No	86,000	60	No	L
Family 3								
1.1	_	м	SD	Yes	_	_	Atrial bigeminy	R and L
11.2	414	F	Palpitations	Yes	60,000	58	Paroxysmal atrial arrhythmia	R and L
11.3	431	F	Palpitations	Yes	7,134	>50	Atrial fibrillation	R and L
111.1	399	F	Dyspnea	Yes	35,650	35	Paroxysmal atrial arrhythmia	R and L
111.2	415	м	Near collapse	No	17,706	>50	Atrial flutter	R and L
111.4	430	м	Palpitations	Yes	3,516	>50	Paroxysmal atrial arrhythmia	-

Ablation?

Presystolic Purkinje potential

IHU LIRYC – Equipe Signal

Follow-Up and Treatment of the Family Members

Patient #	Treatment	PVC/24 h on Medication	LVEF on (Before) Medication (%)
Family 1			
1.1	_	—	_
11.2	Hydroquinidine	<5,000	60 (73)
11.4	Hydroquinidine	<5,000	50 (35)
II.6	Amiodarone	4	_
11.7	None	_	_
II.8	None	—	_
111.1	Hydroquinidine	<5,000	56 (32)
111.2	None	_	_
III.6	*	—	_
111.7	None	_	_
111.9	None	_	_
111.11	None	_	_
111.12	_	_	_
Family 2			
1.2	None	_	_
11.1	Amiodarone	_	45 (20)
11.3	_	_	_
111.1	Hydroquinidine	2,500	60 (60)
111.2	Hydroquinidine	7,700	60 (60)
Family 3			
1.1	_	_	_
11.2	Flecainide	125	58
11.3	Flecainide	5,791	>50 (>50)
111.1	PropafeNon†	31,894	50 (35)
111.2	Flecainide	486	52 (>50)
111.4	Flecainide	21	>50 (>50)

Conclusion

- PVC phenotypes
- Bidirectional PVCs or polymorphic PVCs/VT
 - CPVT (BB, Flecainide, ICD, LCSD)
 - MEPPC syndrome
 - <u>Rate dependant PVCs</u> from the fascicular-Purkinje system
 - Sensitive to <u>Hydroquinidine</u>
 - Transient tachycardia DCM-induced, syncope, SCD
 - Ablation is not the solution!

Thank you for your attention

PVCs in HCM

- NSVT occurs in 25% of patients during ambulatory ECG monitor
- Its prevalence increases with age and correlates with LV wall thickness and late gadolinium enhancement on CMR.
- NSVT during ambulatory monitoring is associated with an increased risk of SCD.
- Documented NSVT during or immediately following exercise is very rare, but may be associated with a higher risk of SCD.

PVCs in ARVC

Up to two-thirds of patients have VAs on resting or ambulatory ECG monitoring and exercise testing.

These VAs are usually of RV origin (i.e. show a left bundle branch morphology), but the QRS axis during VT usually differs from the QRS axis in RVOT, and many patients have multiple QRS morphologies.

PVCs in LQTs

Olivia 11

LQT1

HM

LQT2

Mapping and Ablation of Ventricular Fibrillation Associated With Long-QT and Brugada Syndromes

Michel Haïssaguerre, MD; Fabrice Extramiana, MD; Mélèze Hocini, MD; Bruno Cauchemez, MD;
Pierre Jaïs, MD; Jose Angel Cabrera, MD; Geronimo Farre, MD; Antoine Leenhardt, MD;
Prashanthan Sanders, MBBS; Christophe Scavée, MD; Li-Fern Hsu, MBBS;
Rukshen Weerasooriya, MBBS; Dipen C. Shah, MD; Robert Frank, MD; Philippe Maury, MD;
Marc Delay, MD; Stéphane Garrigue, MD; Jacques Clémenty, MD

Circulation 2003

Devrim 1^{er} ECG après ACC

Devrim J10

Devrim aujourd'hui

Prevalence and arrhythmic risk associated with the appearance of ECG J waves

Heart Rhythm 2016 13, e295-e324DOI: (10.1016/j.hrthm.2016.05.024) J wave expert consensus October 2016

CPVT

PVC ablation at the time of VF inCPVT

Adapted from AK Talib, Journal of arrhythmia, 2016

PVC triggering CPVT

Adapted from Chan KH, Heart, Lung and Circulation 2016

Methods-EP

Standard EP studies (6pts) + 3D navigation systems (3pts) <u>Precise location of the PVC firing</u>:

- Pre-systolic Purkinje potentials (PP) corresponding to PP during normal SR
- Early endocardial activation mapping with a QS unipolar pattern of the EGM
- Concordant pace mapping.

Methods-Genetic

Candidate gene approach:

Direct sequencing of Lamin A/C, ABCC9, SCN5A <u>Functionnal studies</u>:

- Patch-clamp experiments: DNA transfected african green monkey kidney fibroblast-like cells (COS-7).
- Computational models of human left-ventricular myocytes and Purkinje cells.

Results-Genetic

Pedigree and phenotype of the 3 families

Experimental Effects of R222Q Mutation on Nav1.5 Channel in COS-7 Cells

Effects of the R222Q Mutation on a Ventricular CM-AP in the Purkinje/Ventricle Model

