

Brugada syndrome: What do we know in 2015?

Vincent Probst,MD, PhD Reference centre for hereditary arrhythmic diseases, Nantes, France

Type 1 ST-segment elevation spontaneously or after sodium channel blocking agent in at least one right precordial leads (V1 and V2) in a standard or

Prognostic regarding to the symptoms

l'Institut du thorax

ECG pattern

- Presence of late potential
- SDANN and ultra low frequency component were decrease in symptomatic Brugada patients
- Augmented ST-segment elevation during recovery from exercise
- Fractionned QRS

Babai Bigi MA, Heart rhytm 2007 Hermida JS, Eur heart J 2003 Makimoto H, JACC 2010 Priori S, JACC 2012

l'Institut du thorax

ST segment elevation in the peripheral leads V2 J III V3 . aVR V4 / V5 aVF MM MM V6 J

Rollin A, Heart rhythm 2013

— l'Institut du thorax

Predictive value of the different parametres: 323 patients

Table 4Parameters related to SCD and/or AT in univariate andmultivariate analyses

Parameters	OR (95% CI)	Р
Univariate analysis		
Type 1 ST elevation in the peripheral leads	5.55 (2.17–14.21)	.0003
Syncope	3.12 (1.39–7.04)	.006
Spontaneous type 1 ST elevation	2.63 (1.13-6.10)	.023
SCN5A mutations	3.06 (1.06-8.80)	.037
Familial SCD	2.27 (1.01–5.12)	.047
Inducibility	2.39 (0.83-6.31)	.10
Multivariate analysis	· · ·	
Type 1 ST elevation in the peripheral leads	4.58 (1.70–12.32)	.0025
Spontaneous type 1 ST elevation	2.43 (1.01–5.84)	.047
Syncope	2.34 (0.99–5.50)	.051
Familial SCD	1.99 (0.84-4.69)	.11

Rollin A, Heart rhythm 2013

Eckart, Circ 2005

Brugada J, Circ 2003

Probst, Circ 2010

Multivariate analysis

- Symptoms before inclusion (p=0.0001)
 SCD vs asymptomatic (p<0.0001)
 - ✓ Syncope vs asymptomatic (p=0.0002)
- Spontaneous type-1 ECG (p=0.04)
- The results of the EPS (p=0.71) and gender (p=0.63)

 \checkmark not predictive for arrhythmic events.

> ICD implantation (p=0.01) was found as predictor of arrhythmic events.

Probst, Circ 2010

Sierra j, Circ Arrht elec, 2015

ICD in Brugada syndrome

- > 220 patients (34 ±27 month)
- Annual rate of appropriate shocks in asymptomatic patients 1,5 %
- Annual rate of inappropriate shocks
 3.75%

Sacher F, Probst V Circulation 2006.

l'Institut du thorax

- l'Institut du thorax

ICD in Brugada syndrome

	Resucitated SCD (n=18)	Syncope (n=85)	Asymptomatic (n=108)	p-value between the 3 groups	Total (n=211)
Median of Follow-up * (months)	90	97	92	NS	93
Patients with Appropriate shocks	9 (50%)	14 (16%)	11 (10%)	p<0.001	34 (16%)
Median delay to first shock (months)	14	48	38	<i>p</i> =0.016	33
Median of shock	1	2	2	NS	2
Patients with Inappropriate shocks	5 (28%)	31 (36%)	35 (32%)	NS	71 (34%)
Median delay to first shock (months)	22	34	29	NS	32
Median of shock	2	3	2	NS	3
Lead Failure	3 (17%)	20 (24%)	21 (19%)	NS	44 (21%)
Median delay (months)	62	60	63	NS	60
Death	0 (0%)	2 (2%)	4 (4%)	NS	6 (3%)

Sacher F, Probst V Circulation, 2013.

ICD in Brugada syndrome Evolution over time

l'Institut du thora

		Appropriate Shock Rate	2	Inappropriate shock rate	Lead failure rate
	Aborted SCA	Syncope	Asymptomatic		
Year 1	25%	3%	1%	8%	1%
Year 2	30%	6%	2%	13%	2%
Year 3	36%	7%	4%	15%	5%
Year 4	41%	10%	6%	18%	7%
Year 5	48%	11%	6%	23%	13%
Year 10	48%	19%	12%	37%	29%

Inapropriated shocks

> In patients

l'Institut du thorax

- with good implantation parameters (R wave amplitude >5mV at implantation)
- optimal programming (long NID, single high VF zone>210-220bpm)
- close follow-up with remote monitoring
- Inappropriate shocks (0.7%/year compared to 3.7%/year in the general BrS population).

Psychological impact of Brs and ICD

Table 2 Results of the 36-item short-form health survey in the 3 groups

	Physical functioning	Physical role	Bodily pain	General health	Vitality	Social functioning	Emotional role	Mental health
n Mean SD	61 82.17 17.83	60 67.59 32.35	60 77.14 26.75	60 58.96 23.95	59 52.68 24.10	61 80.84 24.31	60 72.92 36.04	59 56.76 24.31
n Mean SD	77 88.15 13.52	74 74.92 27.59	74 76.23 25.88	77 63.94 23.96	76 54.40 19.92	77 83.36 20.22	72 73.96 32.35	74 62.99 21.88
n Mean SD	52 87.2 4 17.58 0.081	51 72.66 34.55 0.39	52 83.28 23.49 0.27	51 66.09 20.57 0.24	52 58.05 20.60	51 81.50 24.01 0.79	51 71.81 36.98	52 60.13 24.19 0.31
	n Mean SD n Mean SD n Mean SD	Physical functioning n 61 Mean 82.17 SD 17.83 n 77 Mean 88.15 SD 13.52 n 52 Mean 87.24 SD 17.58 O.081 0.081	Physical functioning Physical role n 61 60 Mean 82.17 67.59 SD 17.83 32.35 n 77 74 Mean 88.15 74.92 SD 13.52 27.59 n 52 51 Mean 87.24 72.66 SD 17.58 34.55	Physical functioning Physical role Bodily pain n 61 60 60 Mean 82.17 67.59 77.14 SD 17.83 32.35 26.75 n 77 74 74 Mean 88.15 74.92 76.23 SD 13.52 27.59 25.88 n 52 51 52 Mean 87.24 72.66 83.28 SD 17.58 34.55 23.49	Physical functioningPhysical roleBodily painGeneral healthn61606060Mean82.1767.5977.1458.96SD17.8332.3526.7523.95n77747477Mean88.1574.9276.2363.94SD13.5227.5925.8823.96n52515251Mean87.2472.6683.2866.09SD17.5834.5523.4920.57	Physical functioningPhysical roleBodily painGeneral healthVitalityn61606059Mean82.1767.5977.1458.9652.68SD17.8332.3526.7523.9524.10n7774747776Mean88.1574.9276.2363.9454.40SD13.5227.5925.8823.9619.92n5251525152Mean87.2472.6683.2866.0958.05SD17.5834.5523.4920.5720.60	Physical functioningPhysical coleBodily painGeneral healthVitalitySocial functioningn6160605961Mean82.1767.5977.1458.9652.6880.84SD17.8332.3526.7523.9524.1024.31n777474777677Mean88.1574.9276.2363.9454.4083.36SD13.5227.5925.8823.9619.9220.22n525152515251Mean87.2472.6683.2866.0958.0581.50SD17.5834.5523.4920.5720.6024.010.0810.390.270.240.410.79	Physical functioningPhysical coleBodily painGeneral healthVitalitySocial functioningEmotionaln616060596160Mean82.1767.5977.1458.9652.6880.8472.92SD17.8332.3526.7523.9524.1024.3136.04n77747477767772Mean88.1574.9276.2363.9454.4083.3673.96SD13.5227.5925.8823.9619.9220.2232.35n52515251525151Mean87.2472.6683.2866.0958.0581.5071.81SD17.5834.5523.4920.5720.6024.0136.980.0810.390.270.240.410.790.94

ICD, implantable cardioverter defibrillator; n, number of patients; SD, standard deviation.

Probst V, Europace 2011.

- l'Institut du thorax -

News from genetic

Evaluation of the role of the different genes

Gene	BrS cases (n = 167)	Internal controls (n = 167)	p-value 1	UK10K controls (n = 881)	p-value 2
SCN5A	20.4% (34)	2.4% (4)	1.4 x 10 ⁻⁷ *	2.4% (21)	1.7 x 10 ⁻¹⁵ *
SCN10A	6% (10)	2.4% (4)	0.170	3.5% (31)	0.131
CACNA1C	3% (5)	6.6% (11)	0.199	2% (18)	0.395
PKP2	3% (5)	2.4% (4)	1	1.7% (15)	0.348
CACNB2	1.8% (3)	1.2% (2)	1	0.9% (8)	0.396
KCNH2	1.2% (2)	3.6% (6)	0.283	1.6% (14)	1
TRPM4	1.2% (2)	3% (5)	0.448	1.9% (17)	0.754
KCND3	0.6% (1)	1.2% (2)	1	1.6% (14)	0.488
CACNA2D1	0.6% (1)	0.6% (1)	1	3.3% (29)	0.072
HEY2	0.6% (1)	0.6% (1)	1	0.1% (1)	0.293
SCN2B	0.6% (1)	0.6% (1)	1	0.5% (4)	0.581
SCN3B	0.6% (1)	0.6% (1)	1	0.5% (4)	0.581
ABCC9	-	3% (5)	0.061	1.1% (10)	0.379
SCN1B	-	1.8% (3)	0.248	0.3% (3)	1
RANGRF	-	0.6% (1)	1	0.2% (2)	1
FGF12	-	-	-	0.7% (6)	0.597
GPD1L	-	-	-	0.1% (1)	1
HCN4	-	-	-	1.6% (14)	0.144
KCNE1L	-	-	-	1% (9)	0.369
KCNE3	-	-	-	0.1% (1)	1
KCNJ8	-	-	-	0.5% (4)	1

Le Scouarnec, Hum Mol Genet, 2015

GROUPE Nantes (n=422) GWAS

---- l'Institut du thorax

Bezzina, Nature Genet 2013

— l'Institut du thorax —

Cumulative Risk of Brugada syndrome

Bezzina, Nature Genet 2013

Therapy in BS

- Hydroquinidine seems to be effective to treat patients with electrical storm or frequent recurrence of VF (IIa)
- Value in asymptomatic patients has still to be demonstrated (IIb)
- A double blind randomized prospective study is currently in course in France (QUIDAM study)
- Clear interest of ablation of the substrate in this situation

Hermida, JACC 2004 Marquez, heart rhythm 2012

'Institut du thorax

Conclusion

Prognosis of the asymptomatic patients is "relatively" good (12% risk at 10 years in spontaneous type 1 patients)

Predictive value of inducibility of ventricular tachyarrhythmias during EP-study are still under discussion

Institut du thora

- ICD implantation leads to relatively high level of complications that can be improved with a good ICD programming and remote monitoring
- The problem of leads failure should be solved by S-ICD that appears as a very attractive possibility in these patients with intermediate risk but long life expectancy