

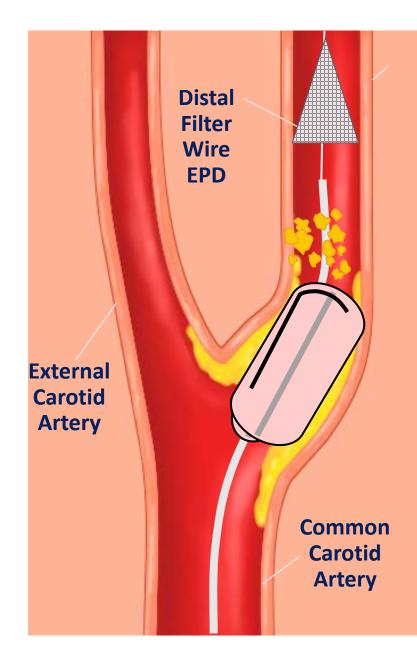
My Most Promising Perspective for Cerebral Protection by Filter-Balloon

Ralf Langhoff, MD Vascular Center Sankt Gertrauden - Berlin Sankt Gertrauden-Hospital Charité, CC11 Academic Teaching Hospital – Charité University Medicine Berlin

Do We Need Embolic Protection During CAS?

Protection oder no Protection - Evidence?

	gen\All Users\Startmenü\Programm			
EpiInfo Version 6	Statcalc	November 1993		
Unmatched Cohort and Cross-Sectional Studies (Exposed and Nonexposed) Sample Sizes for 7.25 % Disease in Unexposed Group				
Conf. Power Unex:Exp 95.00 × 80.00 × 1:1	7.38 × 1.02 1.02 	Unexp. Exposed Total		
	Ě	Press <esc></esc>		
F1-Help	F5-Print	F6-Open File F10-Done		


Acute and Long Term Results of CAS (Stroke, MI, Death) Depend on a 30 Second Time Frame in Most of the Patients!

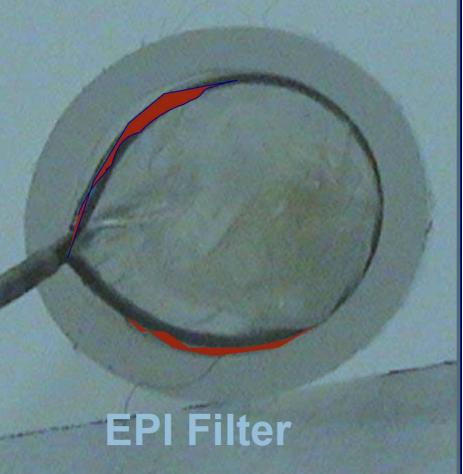
CREST-Trial: 30 Day Outcome

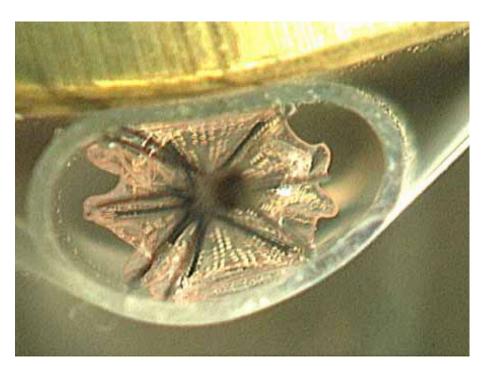
Table 2. Primary End Point, Components of the Primary End Point, and Other Events, According to Treatment Group.*

End Point			Periprocedural Period		
	CAS (N=1262)	CEA (N=1240)	Absolute Treatment Effect of CAS vs. CEA (95% CI)	Hazard Ratio for CAS vs. CEA (95% CI)	P Value
	no. of patie	nts (% ±SE)	percentage points		
Death	9 (0.7±0.2)	4 (0.3±0.2)	0.4 (-0.2 to 1.0)	2.25 (0.69 to 7.30)†	0.18†
Stroke					
Any	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major ipsilateral	11 (0.9±0.3)	4 (0.3±0.2)	0.5 (-0.1 to 1.2)	2.67 (0.85 to 8.40)	0.09
Major nonipsilateral‡	0	4 (0.3±0.2)	NA	NA	NA
Minor ipsilateral	37 (2.9±0.5)	17 (1.4±0.3)	1.6 (0.4 to 2.7)	2.16 (1.22 to 3.83)	0.009
Minor nonipsilateral	4 (0.3±0.2)	4 (0.3±0.2)	0.0 (-0.4 to 0.4)	1.02 (0.25 to 4.07)	0.98†
Myocardial infarction	14 (1.1±0.3)	28 (2.3±0.4)	-1.1 (-2.2 to -0.1)	0.50 (0.26 to 0.94)	0.03
Any periprocedural stroke or postprocedural ipsilateral stroke	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major stroke	11 (0.9±0.3)	8 (0.6±0.2)	0.2 (-0.5 to 0.9)	1.35 (0.54 to 3.36)	0.52
Minor stroke	41 (3.				
Any periprocedural stroke or death or post- procedural ipsilateral stroke	^{55 (4.} 2	ΟΜ	inor S	Strok	es
Primary end point (any periprocedural stroke, myocardial infarction, or death or postprocedural ipsilateral stroke)	00 (5.		erzin		

Why Do Minor Strokes Occur Despite EPD use?

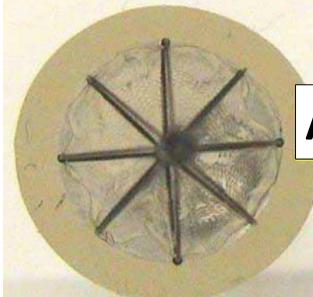
• Pore Size (100-250 microns)


• Filter Malapposition


- Improper Sizing
- Shape Mismatch
- Patient Movement

• Overwhelming Debris Burden

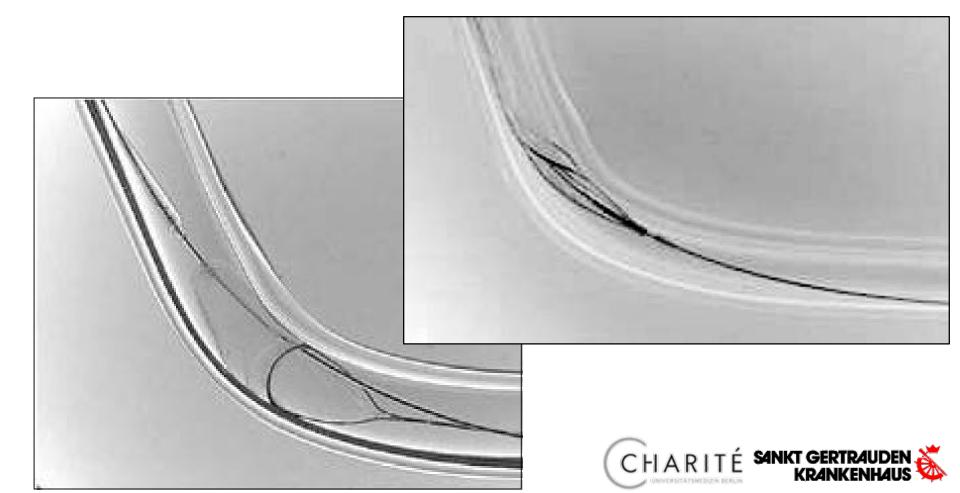
Wallapposition of Filters



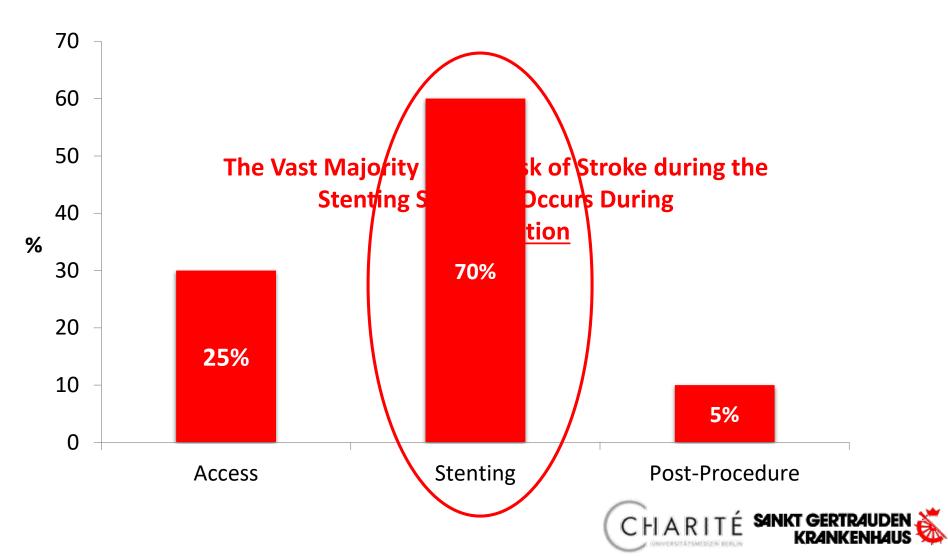
Area without Protection

Angioguard

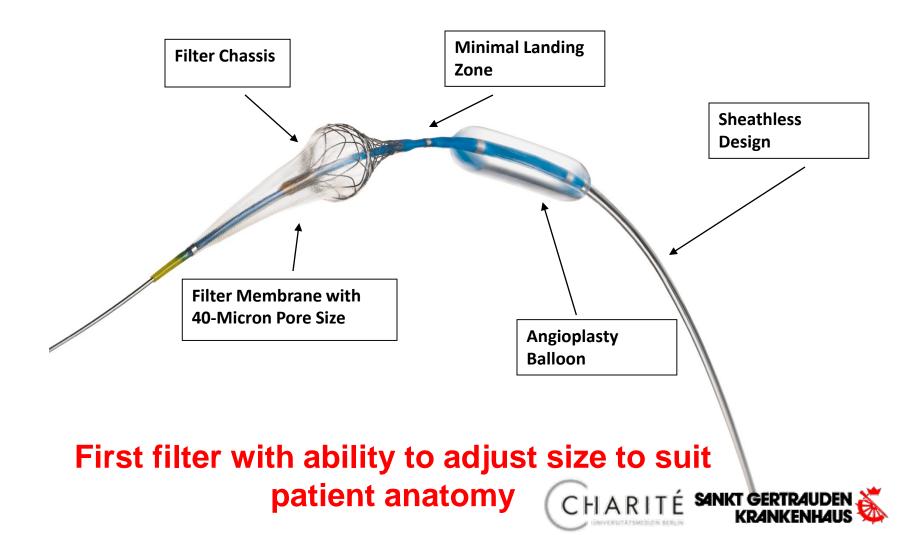
View of CORDIS


View of ABBOTT

Emboshield



Impact of Filter Design on Efficiency of EPD


concentric vs. excentric filters

When Do Strokes Occur During Carotid Artery Stenting?

PALADIN[®] Carotid Post-Dilation Balloon with Integrated Embolic Protection (IEP) Technology

The Paladin Study

• To evaluate the procedural safety and technical success of the Paladin System in subjects with carotid artery stenosis

• 106 subjects enrolled at 5 sites in Germany

Investigator	Site	# Enrolled
Dr. Ralf Langhoff	Sankt Getrauden-Krankenhaus, Berlin	45
Prof. Joachim Schofer	Mathey-Schofer Clinic, Hamburg	28
Prof. Thomas Zeller	Universitäts Herzzentrum - Freiburg - Bad Krozingen	18
Prof. Dierk Scheinert	Universitätsklinikum Leipzig	8
Prof. Horst Sievert*	Cardiovasculäres Centrum, Frankfurt	6

PALADIN Study Patient Population

Study Population

- Symptomatic subjects (history of ipsilateral TIA, stroke or amaurosis fugax within the past 6 months) with carotid stenosis ≥ 50% by angiography
- Asymptomatic subjects with carotid stenosis ≥ 70% by angiography
- Primary Endpoints
 - Acute Technical success
 - 30 day (neurological death and stroke)

Results - The Paladin Study (n=106)

106 Subjects Enrolled at 5	Paladin Study			
Sites in Germany	Outcome	Outcomes at Discharge % (N/106)	30-Day Outcomes % (N/105 ¹)	
99% Technical Success	Stroke, Death and MI	0.00	0.95 (1)	
No Death, Stroke, MI Through Discharge	Death	0.00	0.00 (0)	
	Stroke	0.00	0.95 (1)	
1 Unrelated Stroke At Day 12, Complete Recovery	Myocardial Infarction	0.00	0.00 (0)	
	Stroke and Death	0.00	0.95 (1)	

¹ Of the 106 subjects enrolled, one (1) subject withdrew consent following discharge, and 105 were eligible for follow up at 30 days.

The Paladin Study

Two Sub-Studies:

- > MRI Study (n= 30): Incidence of new DWI-lesions, Volume size
- Histopathologyogical Filter-Study (n=23): Size and counts of emboli

Comparative Results across MRI Studies

	Paladin (n=30)	PROFI ¹ Proximal group (n=31)	PROFI ¹ Filter group (n=31)	ICSS ² Filter group (n=37)	CARENET ³ CGuard (n=26)
Incidence of New Lesions	36.7%	45%	87%	73%	48%
Mean number of lesions per pt.	0.50 ± 0.7	1.0 ± 1.4	3.6 ± 3.2	NR	NR
Mean Lesion Volume (cm ³)	0.01	0.16	0.59	NA	0.04
Total number of new ischemic lesions	16	NR	NR	NR	117
Maximum lesion volume (cm ³)	0.158	0.84	2.4	NR	0.445

¹ Bijuklic K, Wandler A, Hazizi F, Schofer J. The PROFI Study. JACC 2012 Apr 10;59(15):1383-9.

² Bonati LH, et al, ISCC-MRI Study group. New ischaemic brain lesions on MRI after stenting or CEA for symptomatic carotid stenosis: a substudy of ICSS. Lancet Neurol. 2010 Apr;9(4):353-62.

³ Schofer J, Musialek P, Bijuklic K, Kolvenbach R, Trystula M, Siudak Z, Sievert H. The CGuard CARENET Trial. JACC Cardiovas Interv. 2015 Aug 17;8(9):1299-34.

Cognitive Impairment Due to Embolization

Importance of Micro-Embolization

Volume of subclinical embolic infarct correlates to long-term cognitive changes after carotid revascularization

Wei Zhou, MD,^{a,b} Brittanie D. Baughman, MS,^a Salil Soman, MD,^c Max Wintermark, MD,^d Laura C. Lazzeroni, PhD,^e Elizabeth Hitchner, MS,^a Jyoti Bhat, MS,^f and Allyson Rosen, PhD,^{e,f} Palo Alto and Stanford, Calif; and Cambridge, Mass

ABSTRACT

Objective: Carotid intervention is safe and effective in stroke prevention in appropriately selected patients. Despite minimal neurologic complications, procedure-related subclinical microemboli are common and their cognitive effects are largely unknown. In this prospective longitudinal study, we sought to determine long-term cognitive effects of embolic infarcts.

Methods: The study recruited 119 patients including 46% symptomatic patients who underwent carotid revascularization. Neuropsychological testing was administered preoperatively and at 1 month, 6 months, and 12 months postoperatively. Rey Auditory Verbal Learning Test (RAVLT) was the primary cognitive measure with parallel forms to avoid practice effect. All patients also received 3T brain magnetic resonance imaging with a diffusion-weighted imaging (DWI) sequence preoperatively and within 48 hours postoperatively to identify procedure-related new embolic lesions. Each DWI lesion was manually traced and input into a neuroimaging program to define volume. Embolic infarct volumes were correlated with cognitive measures. Regression models were used to identify relationships between infarct volumes and cognitive measures.

Journal of the Neurological Sciences Volume 328, Issue 1-2, 15 May 2013, Pages 58-63

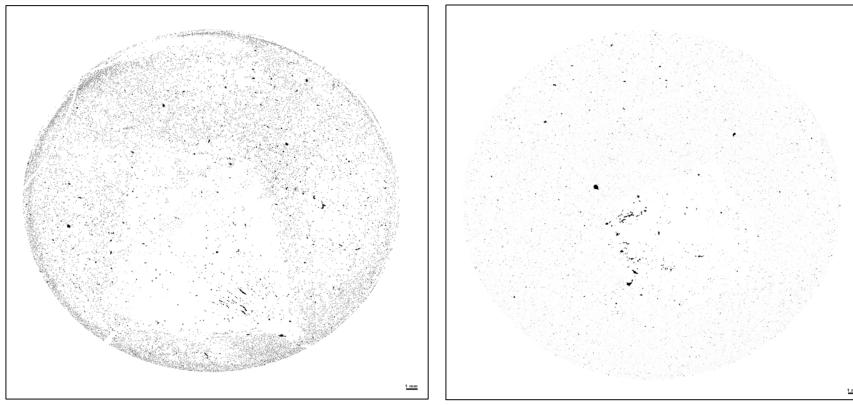
Diffusion-weighted lesions after carotid artery stenting are associated with cognitive impairment

Maggio, P.a, Altamura, C.a, Landi, D.a, Migliore, S.a, Lupoi, D.b, Moffa, F.c, Quintiliani, L.a, Vollaro, S.a, Palazzo, P.a, Altavilla, R.a, Pasqualetti, P.de, Errante, Y.f, Quattrocchi, C.C.f, Tibuzzi, F.c, Passarelli, F.c, Arpesani, R.b, Di Giambattista, G.b, Grasso, F.R.f, Luppi, G.f, Vernieri, F.a

Abstract

The effect of carotid artery stenting (CAS) on cognitive function is still debated. Cerebral microembolism, detectable by post-procedural diffusion-weighted imaging (DWI) lesions, has been suggested to predispose to cognitive decline. Our study aimed at evaluating the effect of CAS on cognitive profile focusing on the potential role of cerebral microembolic lesions, taking into consideration the impact of factors potentially influencing cognitive status (demographic features, vascular risk profile, neuropsychological evaluation at baseline and magnetic resonance (MR) markers of brain structural damage). Thirty-seven patients with severe carotid artery stenosis were enrolled. Neurological assessment, neuropsychological evaluation and brain MR were performed the day before CAS (E0). Brain MR with DWI was repeated the day after CAS (E1), while neuropsychological evaluation was done after a 14-month median period (E2). Volumes of both white matter hyperintensities and whole brain were estimated at E0 on axial MR FLAIR and T1w-SE sequences, respectively. Unadjusted ANOVA analysis showed a significant CAS - DWI interaction for MMSE (F = 7.154(32), p =.012). After adjusting for factors potentially influencing cognitive status CAS \hat{a} - DWI interaction was confirmed for MMSE (F = 7.092(13), p =.020). Patients with DWI lesions showed a mean E2-E0 MMSE reduction of - 3.1, while group without DWI lesions showed a mean E2-E0 MMSE of + 1.1. Our study showed that peri-procedural brain microembolic load impacts negatively on cognitive functions, independently from the influence of patients-related variables. © 2013 Elsevier B.V.

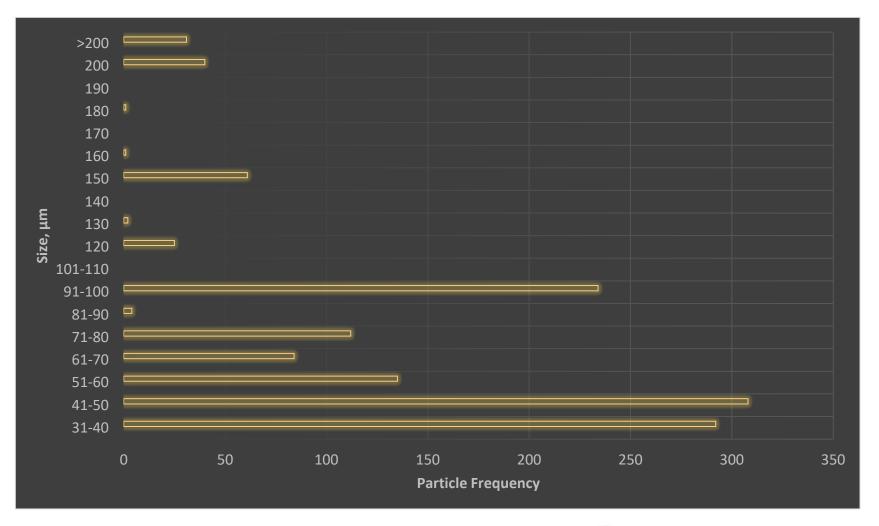
Filter Histopathology Sub-Study (n=23)


- Filters in a subset of subjects were collected for histopathological analysis to evaluate size and number of particles
- Paladin and primary EPD were retrieved from 23 subjects between Sept 2015 – Aug 2016
- Following CAS procedure, both filters preserved in 10% buffered formalin and sent to a core lab for analysis
- Upon receipt at the core lab, the filters were visibly examined
 - Samples removed from the formalin; placed in a 35 mm culture dish.
 - Visible clumps of RBCs at the edges of the culture dish removed
 - Samples scanned with SEM with 20 micron detection capability
 - Post-process images were taken using incremental high pass filter radii in Fourier space to binarize particles
 - Particle counts were determined

Filter Examples:

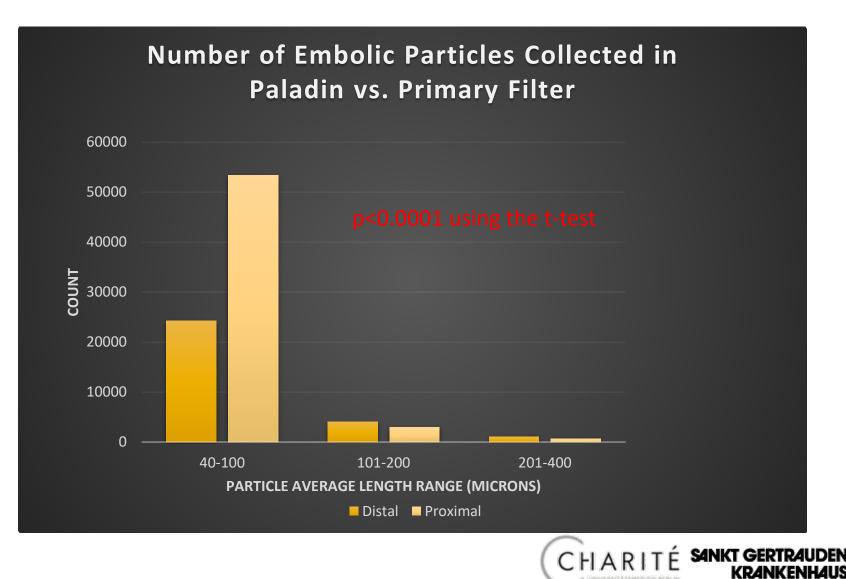
Subject 02-037, Sankt Gertrauden-Krankenhaus, Berlin

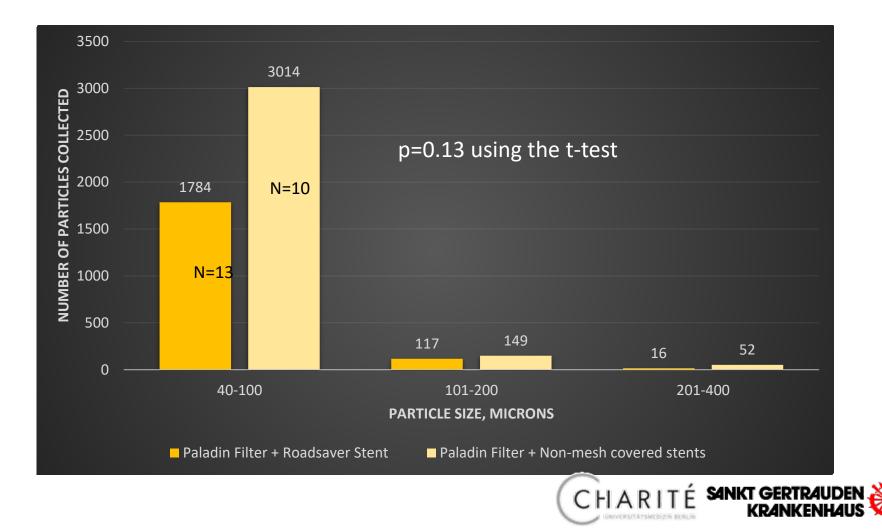
64 year old male, asymptomatic LICA Predilation with 3x20 Maverick, BSC FilterWire + Wallstent 5.0 x 20 mm Paladin System used for post dilation



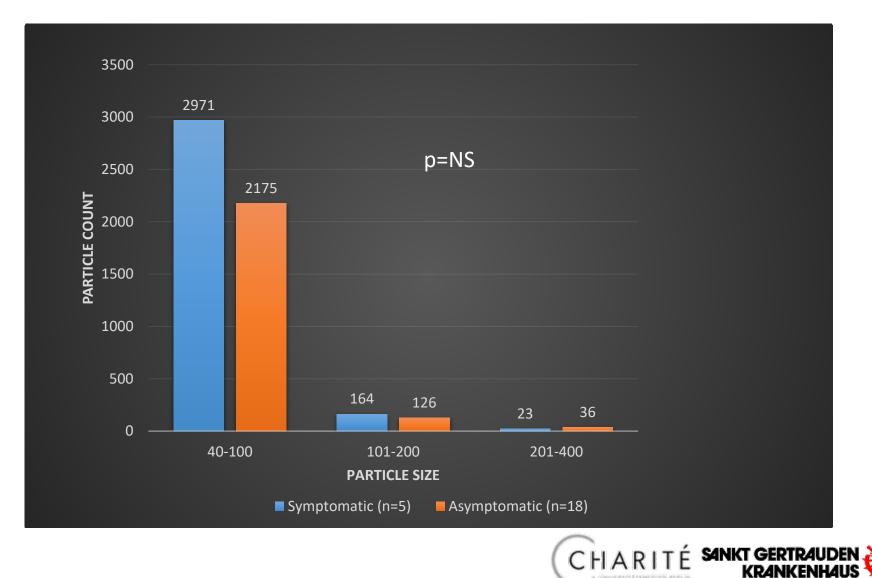
- 1. Post process image of Paladin filter particle scan
- 2. Post process image of primary filter particle scan

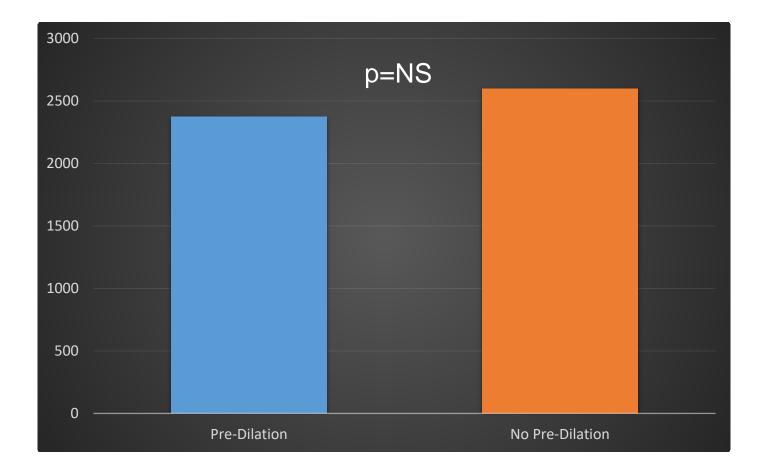
Filter Histological Analysis: Particle Size


24 filters collected for analysis of emboli count and size

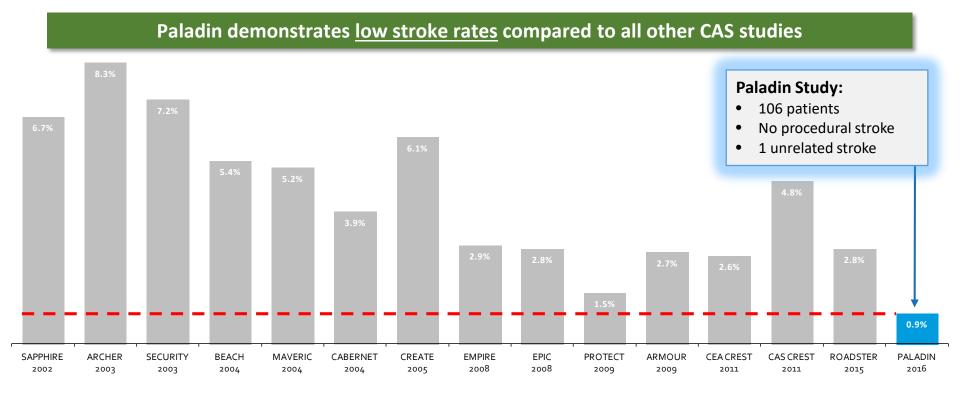


Filter Histological Analysis: Particle Count


24 paired filters collected for analysis of emboli count and size


Comparison of Particle Counts in CAS with Mesh-Covered Stents vs Non-Mesh Covered Stents

Comparison of Particle Counts in CAS in Symptomatic vs Asymptomatic Patients

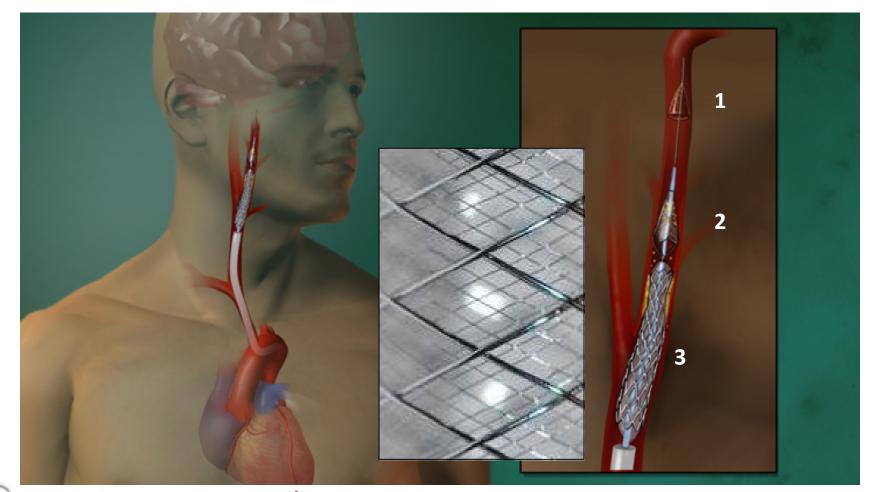


Comparison of Particle Counts in CAS performed with Pre-Dilation vs Without Pre-Dilation

Clinical Data: Comparison of MAE Across CAS Studies

30-Day MAE defined as death, stroke or MI

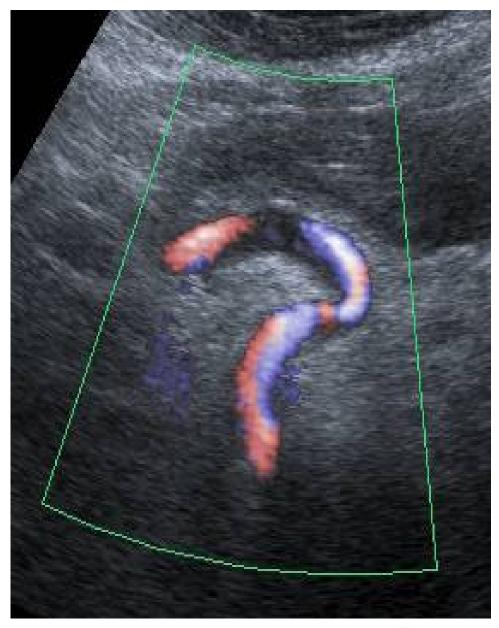
Paladin results, 2016 study Prospective multi-center studies with >100 patients



Sometimes it's really important to spot things before it finds you

'Tripple-Protection'

Procedures become more safe if they remain a routine, stepwise, straight forward and intuitive workflow without adding any additional steps which may cause a risk!



SUMMARY-

Strategy to improve the outcome of CAS

- In the aera of Cerebral Protection the Stroke Risk is primarily influenced by microemboli
- Micromesh stents may prevent acute and late events (major and minor strokes)
- Paladin micropore filter for postdilation may effectively prevent minor strokes in the most critical phase of CAS
- Patient selection (soft plaques/thrombus containment) and concomittant medication will further improve acute results of CAS

Thank You For Your Attention!

Ralf Langhoff, MD Center for Vascular Medicine Berlin St. Gertrauden Hospital Charité, CC11 Academic Teaching Hospitals – Charité Berlin