

Stent choice is more important than protection device in CAS

Ahmed BOUZID Max AMOR Louis Pasteur Clinic, Essey-lés Nancy

Disclosure of Interest

Speaker Name: Ahmed BOUZID.

• I do not have any potential conflict of interest

- 15-20% of Stroke/TIA are secondary to carotid lesions.
- First CEA was performed in 1953 and the first CA Angioplasty was performed in 1977.
- NASCET study for symptomatic in 1991 and ACAS study for asymptomatic in 1995.

Protection or Nonprotection in Carotid Stent Angioplasty The Influence of Interventional Techniques on Outcome Data From the SPACE Trial

NEXT GENERATION

Olav Jansen, PhD; Jens Fiehler, PhD; Marius Hartmann, PhD; Hartmut Brückmann, PhD

SPACE Randomized trial CAS vs CEA Symptomatic patients N: 563 With EPD : 145, EPD Without:418

No statistically significant difference between the two groups (p=0.40)

CAS	No. of Adverse Events With Protection (total n=145)	No. of Adverse Events Without Protection (total n=418)		
Ipsilateral stroke or death	12 (8.3%, 95% Cl: 4.3-14.0%)	26 (6.5%, 95% CI: 4.1-9.0%)		
Ipsilateral stroke ≥Rankin3 or death	8 (5.5%, 95% Cl: 2.4-10.6%)	18 (4.5%, 95% CI: 2.6-6.7%)		

Protection or Nonprotection in Carotid Stent Angioplasty The Influence of Interventional Techniques on Outcome Data From the SPACE Trial

Olav Jansen, PhD; Jens Fiehler, PhD; Marius Hartmann, PhD; Hartmut Brückmann, PhD

Pooled analysis of SPACE and EVA3S show non significant difference in OE rate during CAS with or without protection device , (p=0.90 , 95% CI 0.56-1.56)

OE:ipsilaterla stroke or ipsilateral stroke/ death within 30 days

DOI: 10.1161/STROKEAHA.108.534289

Carotid Angioplasty and Stenting With and Without Cerebral Protection

Clinical Alert From the Endarterectomy Versus Angioplasty in Patients With Symptomatic Severe Carotid Stenosis (EVA-3S) Trial

EVA-3S Investigators

EVA3S Randomized trial CAS vs CEA Symptomatic patients N: 527 With EPD : 145 Without EPD Without:418

	CAS With Cerebral Protection* (n=58)	CAS Without Cerebral Protection† (n=15)	Unadjusted Odds Ratios (95% CI)	Age-Adjusted Odds Ratios (95% Cl)
Any stroke	5 (8.6%)	4 (26.7%)	3.9 (0.9-16.7)	2.8 (0.6-12.8)
Major stroke	1 (1.7%)	2 (13.3%)	8.8 (0.7-100.0)	5.8 (0.5-71.0)
Any stroke or death	6 (10.3%)	4 (26.7%)	3.2 (0.8-13.0)	2.5 (0.6-10.8)
Any major stroke or death	2 (3.4%)	2 (13.3%)	4.3 (0.6-33.3)	3.8 (0.5-31.6)
Any procedural stroke§	3 (5.2%)	2 (13.3%)	2.8 (0.4-18.7)	2.3 (0.3–15.7)

TABLE 2. Risk of Stroke or Death Within 30 Days of CAS With or Without Cerebral Protection

Clinical research

Embolic protection devices for carotid artery stenting: better results than stenting without protection?

Ralf Zahn^{a,*}, Bernd Mark^a, Nikolaj Niedermaier^b, Uwe Zeymer^a,

Table 3 Hospital medication and hospital events

ospective registry :1483 patier	Protection ItSevices n=668 (100%)	No protection devices n=815 (100%)	p-value	OR (95% CI)
Hospital medication				
Aspirin	620/659 (94.1%)	767/813 (94.3%)	0.832	0.95 (0.61-1.48)
Ticlopidine/Clopidogrel	622/632 (98.4%)	528/555 (95.1%)	0.001	3.81 (1.53-6.63)
Phenprocoumon	26/631 (4.1%)	31/809 (3.8%)	0.781	1.08 (0.63-1.84)
Statins ^a	313/391 (80.1%)	55/70 (78.8%)	0.776	1.09 (0.59-2.04)
Angiotensin converting enzyme inhibitors ^a	259/392 (66.1%)	45/70 (64.3%)	0.772	1.08 (0.64-1.84)
ß-blockers ^a	255/397 (64.2%)	43/67 (64.2%)	0.993	1.00 (0.58-1.72)
Hospital events				
Ipsilateral amaurosis fugax	1/666 (0.2%)	6/789 (0.8%)	0.094	0.20 (0.02-1.63)
Ipsilateral TH	17/666 (2.6%)	23/789 (2.9%)	0.075	0.07 (0.46-1.65)
Ipsilateral stroke	11/666 (1.7%)	32/789 (4.1%)	0.007	0.40 (0.20-0.79)
insilateral minor stroke	4/666 (0.6%)	15/789 (1.9%)	0.029	0.31 (0.10 0.2)
 ipsilateral major stroke 	8/666 (1.2%)	17/780 (2.2%)	0.105	0.55 (0.24-1.29)
Ipsilateral stroke/TIA/amaurosis fugax	29/666 (4.4%)	58/789 (7.4%)	0.016	0.57 (0.36-0.91)
Any ischaemic event contralateral	6/666 (0.9%)	17/789 (2.2%)	0.056	0.41 (0.16-1.05)
Myocardial infarction	0 (0%)	0 (0%)	1	
Death	2/668 (0.3%)	0 (0%)	0.118	-
All non-fatal strokes and all death	14/666 (2.1%)	39/789 (4.9%)	0.004	0.41 (0.22-0.77)
Any death/stroke/TIA/amaurosis fugax	31/666 (4.7%)	58/789 (7.4%)	0.032	0.62 (0.39-0.96)

OR = odds ratio, CI = confidence interval.

^a Data available only in a subset of patients.

 Routine practice , recent and ongoing carotid trials (CREST, ACT1, ACST2, SPACE2...) have imposed the systematic use of EPDs.

What do we expect from carotid stent?

Acutely:

- Scaffolding of the plaque ++
- Recoil resistance , dissection treatment
- Conformability to carotid artery anatomy (CCA 8mm, ICA :5mm
- Crossability, radio-opacity, positioning accuracy, Easy to deploy, EPD compatibility , access compatibility

Chronicaly:

- Resistance to compression and migration
- Long term patency

Stent Design

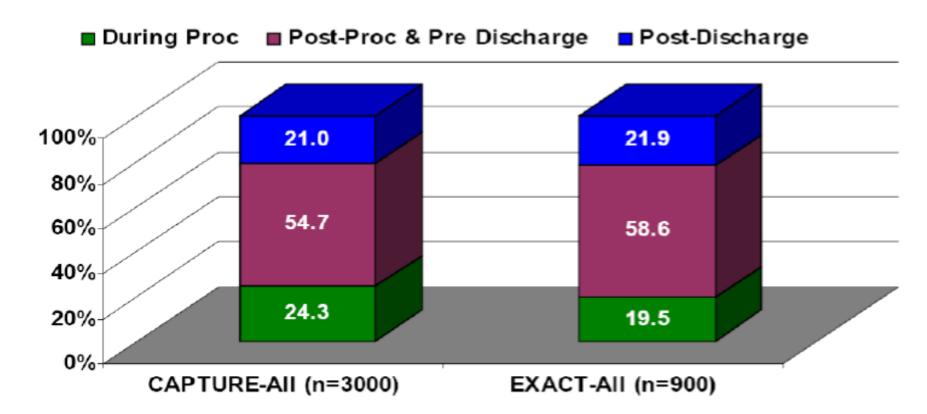
Proximal					
	PROTÉGÉ® RX (Tapered, 8-6mm)	RX ACCULINK™ (Tapered, 8-6 mm)	Xact® (Tapered, 8-6mm)	PRECISE® (Straight, 8 mm)	WALLSTENT® (Straight, 8 mm)
Pore Diam. (mm) <mark>P</mark>	1.12	1.10	1.00	1.12	0.92
Pore Size (mm2)Þ	2.65	12.50	3.46	2.43	0.948
Cell Area (mm2)	7.19	12.50	3.46	7.39	0.948
Distal					
	PROTÉGÉ® RX (Tapered, 8-6 mm)	RX ACCULINK™ (Tapered, 8-6mm)	(Tapered, 8-6mm Xact)	PRECISE® (Straight, 8 mm)	WALLSTENT® (Straight, 8 mm)
Pore Diam. (mm)	1.08	1.06	0.96	1.12	0.92
Pore Size (mm2)■	1.80	10.78	2.23	2.43	0.948
Cell Area (mm2)	4.48	10.78	2.23	7.39	0.948

Available Carotid stents

Open versus Closed Cell versus Mesh-Covered Stents

Stent Name	Stent Image	Stent Design	Free Cell Area	Specifics of Design	Stent Diameter (unconstrained)	Stent Length (unconstrained)
Acculink		Open Cell	11.5mm 2	Self-expanding nitinol stent	5 - 10mm (15 - 30Fr)	20 - 40mm
Protégé		Open Cell	10.7mm 2	Self-expanding nitinol stent	6 - 10mm (18 - 30Fr)	20 - 60mm
Precise Pro Rx		Open Cell	6mm2	Self-expanding nitinol stent	5 - 10mm (15 - 30Fr)	20 - 40mm
Adapt	11 million	Closed Cell	4.4mm2	Self-expanding nitinol stent	6 - 10mm (18 - 30Fr)	21 - 44mm
X-Act		Closed Cell	2.5mm2	Self-expanding nitinol stent	7 - 10mm (21 - 30Fr)	20 - 40mm
Wallstent	\sim	Closed Cell	1.1mm2	Braided construction	7 - 10mm (21 - 30Fr)	22 - 59mm
Cristallo Ideale		Hybrid	3.2mm2	Multisegment nitinol	6 - 11mm (18 - 33Fr)	20 - 40mm
Gore	THE	Mesh Covered	0.5mm2	PTFE mesh (heparin coated) on nitinol stent)	unable to obtain specifics	
Roadsaver	A C	Mesh Covered	0.4mm2	Nitinol double layer micromesh	5 - 10mm (15 - 30Fr)	25 - 43mm
InspireMD Cguard		Mesh Covered	0.18mm 2	PET MicroNet on nitinol stent	6 - 10mm (18 - 30Fr)	20 - 60mm

http://dx.doi.org/10.1053/j.semvascsurg.2017.04.007



The impact of stent design on outcomes: Procedural Stroke

Timing for Events in CAS:

More than 70% of events after CAS occur after the procedure

From M.Bosiers, and others

	Total population					
	Patients	All events	Post-procedural events			
Open cell	937	39	32			
Closed cell Total	2242 3179	51 90	29 61 delayed	vents		
Cell type Open cell Closed cell Total	3179	4.2% 2.3% 2.83%	3.4% 1.3% 1.9%			

Bosiers et al. Eur J Vasc Endovasc Surg 2007;33:135

Table 5. P-values for the test that event rates differ between stents

Population	Outcome	<i>p</i> -value
Total	All events Post-procedural events	0.018
Symptomatic	All events Post-procedural events	0.002 <0.0001
Asymptomatic	All events Post-procedural events	0.248 0.790

Bosiers et al. Eur J Vasc Endovasc Surg 2007;33:135

Wallstent

Exponent

SVS Registry :Evaluation of stent cell design on carotid stenting N: 2322 patients Outcomes

Thirty-day outcomes for cell design by symptomatology

		OPEN		CLOSED			
Thirty-day outcomes	SYMPT (n = 796) n (%)	ASYMP (n = 979) n (%)	P value	SYMPT (n = 265) n (%)	ASYMP (n = 282) n (%)	P value	
Death, stroke, or MI	42 (5.28)	31 (3.17)	.0302	12 (4.53)	8 (2.84)	.3639	
Death, stroke, or TIA	55 (6.91)	37 (3.78)	.0035	15 (5.66)	12 (4.26)	.5545	
Mortality	10/1.26)	15 (1 52)	6800	6(226)	4 (1 4 2)	5242	
Stroke	29 (3.64)	16 (1.63)	.0093	5 (1.89)	4 (1.42)	.7453	
1111	0(0.75)	7 (0.72)	1.0000	ə (1.19)	1 (0.00)	.0007	
TIA	19 (2.39)	9 (0.92)	.0200	6 (2.26)	4 (1.42)	.5343	

ASYMP, Asymptomatic; CLOSED, closed cell stent; MI, myocardial infarction; OPEN, open cell stent; SYMPT, symptomatic; TIA, transient ischemic attack. P values were based on Fisher exact test. Outcomes are defined as occurring intraoperatively, predischarge, or between discharge and 30 days. Rates are per patient.

Jim J et al. JVS 2011;54:71-79

Incidence of embolism associated with carotid artery stenting: open-cell versus closed-cell stents

N = 96 (76 symptomatic)

Transfemoral filter protected (FilterWire N = 86, AngioGuard N = 5)

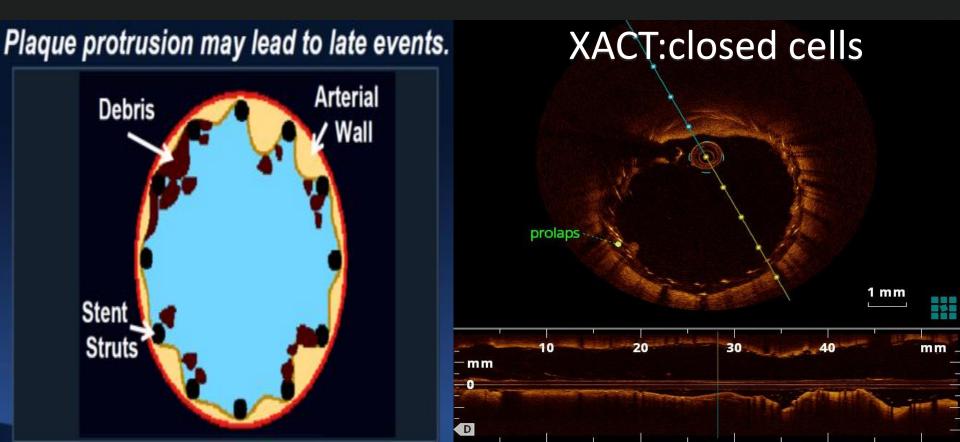
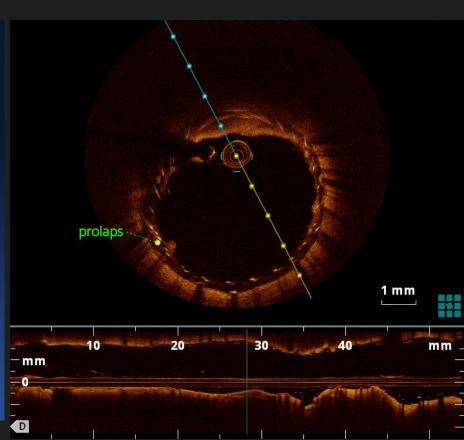

Randomly allocated to: PRECISE (N=48) WALLSTENT (N=48)

TABLE 2: Comparison of outcomes between the closed-cell and open-cell stent groups

Outcome Overall		Closed-Cell Stent Group	Open-Cell Stent Group	p Value
procedural				
distal branch embolism	1 (1.0%)	0	1 (2.1%)	1.000
in-stent filling defect	2 (2.1%)	1 (2.1%)	1 (2.1%)	1.000
residual ulcer or gap	esidual ulcer or gap 35 (36.4%) 29 (60.4%)		6 (12.5%)	<0.001
captured debris in EPD	35 (36.4%)	14 (29 2%)	21 (43 8%)	0.138
new lesion on postop DWI*	36 (39 6%)	12 (27.3%)	24 (51 1%)	0.020
clinical†				
total	4 (4.3%)	4 (8.5%)‡	0	0.117
TIA	2 (2.2%)	2 (4.3%)‡	0	0.495
stroke	1 (1.1%)	1 (2.1%)‡	0	1.000
death	1 (1.1%)	1 (2.1%)‡	0	1.000

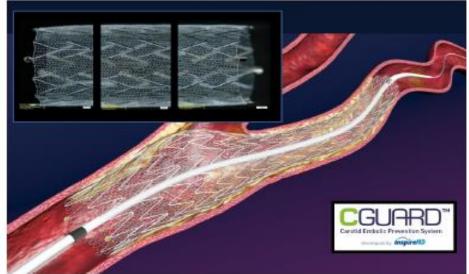
- The embolic protection devices protect against embolic release & possible stroke during procedure
- BUT most strokes occur post procedural in the first 48 h.
- Sustained embolic protection is indispensable.

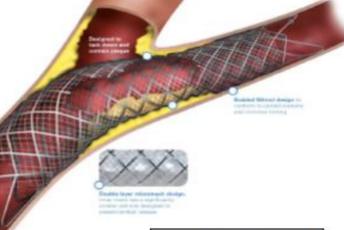

Are we able to provide delayed embolic protection without loosing the long term benefit of nitinol stents?

Micromesh may provide sustained embolic protection:

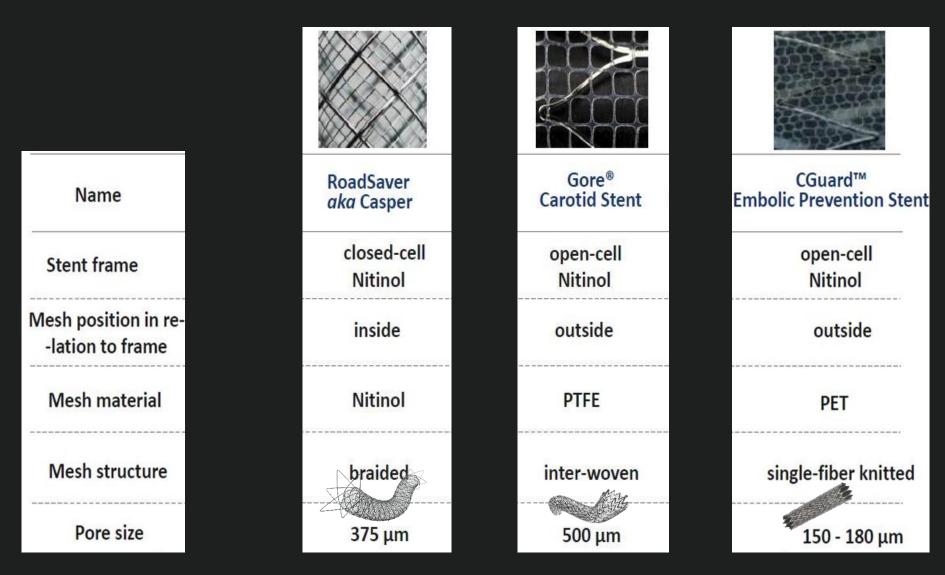
By covering entirely the lesion Stops the plaque prolapse through struts

Plaque protrusion may lead to late events.

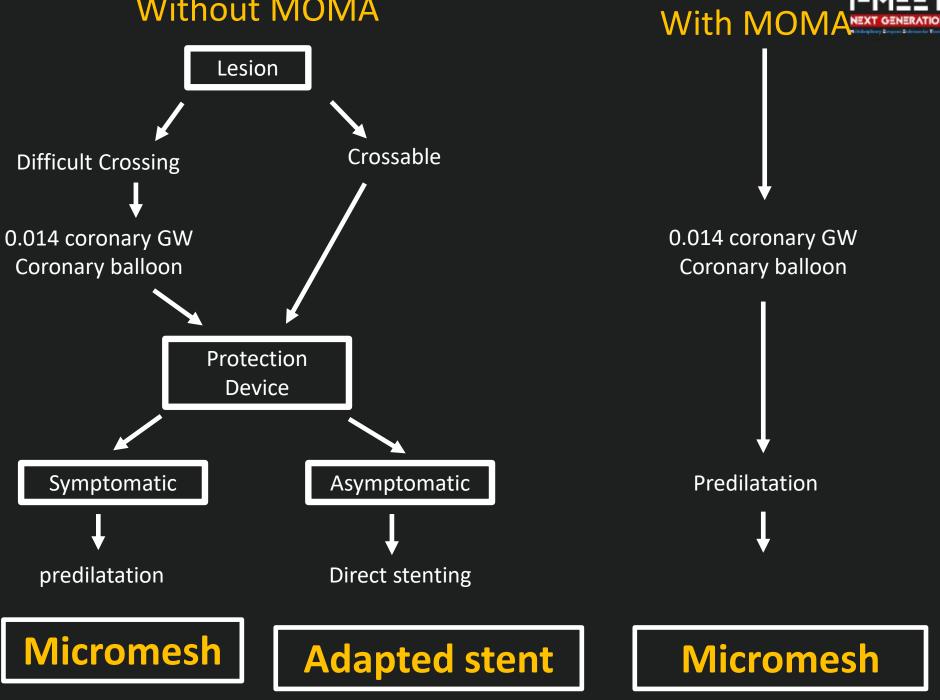





THE THREE MICROMESH CAROTID STENTS


Common Cavettal Artery (CCA)

Stent Selection including Micromesh


Туре	Open (Cells Stent	Clos	Closed Cells Stent		lls Stent Micromesh	
Name Comp	Precise Cordis	Proteg EV 3	Wallstent BSC	Adapt BSC	Xact Abbott	Roadsaver Terumo	Cguard Inspire
Sympto	+	±	+++	+++?	++	+++	+++
Asymp.	+++	++	+	++	++	+++	+++
Bifurc.	++	+++	+++	+	±	+++	+
Ulcerate	++	++	+++	++?	+++	+++	+++
Calcifie	++	++	+	++	+++	+	++
Short	+++	+++	-	++	+++	+	+++
Long	++	++	+++	++	+	+++	+
Accurac	+++	++	+	++	+++	+	+++
Irr/Coni	+	+++	+++	++	+++	++	+
Restenosis	+++	+++	+++	+++	+++	+++	+++
Radioth	++	++	+++	-	+++	+++	+

APPROACH IN OUR CENTER

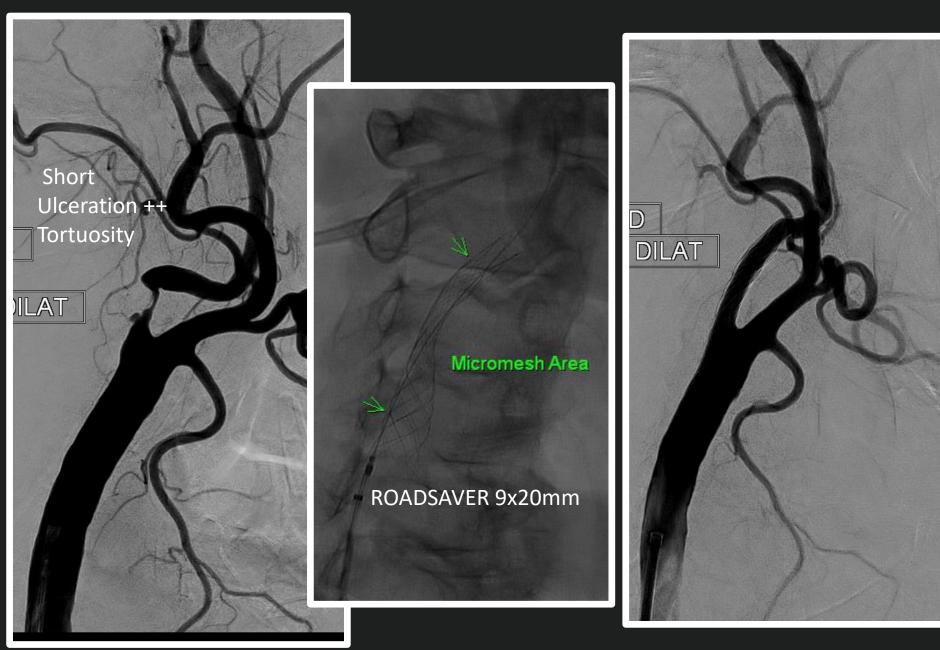
Without MOMA

Case 01: Asymptomatic short RIC artery lesion

Short Ostial Excentric No calcification No ulceration

Precise 9x20mm

CIG


Case 02: Asymptomatic LCC artery lesion

Case 03: Asymptomatic RIC artery lesion

Case 04: symptomatic LIC artery lesion

Long Ulceration Mild calcifications

Take Home messages:

- Carotid stenting is complementary to EPDs devices.
- Carotid stent design is a key in clinical outcomes.

Embolization prevention:

- EPDs during procedure
- Stent during and after procedure

Thank you