

Prevention of spinal cord ischemia in (branched) TEVAR

Tomasz Jakimowicz

Department of General, Vascular and Transplant Surgery Medical University of Warsaw, Poland Head: prof. Sławomir Nazarewski

Disclosure of Interest

Speaker name: TOMASZ JAKIMOWICZ

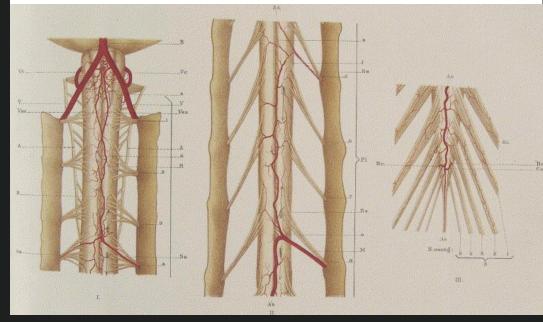
- I have the following potential conflicts of interest to report:
- Consulting, travel grants: Cook, Jotec
- Employment in industry
- Shareholder in a healthcare company
- Owner of a healthcare company
- Other(s)

I do not have any potential conflict of interest

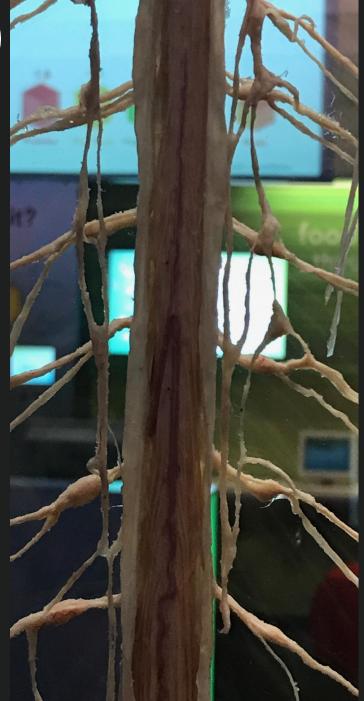
Spinal cord ischemia > Paraplegia

- An impairment in motor function of the lower extremities not attributable to other causes
- The only unsolved problem during surgical TAAA treatment

Patogenesis spinal cord ischemia

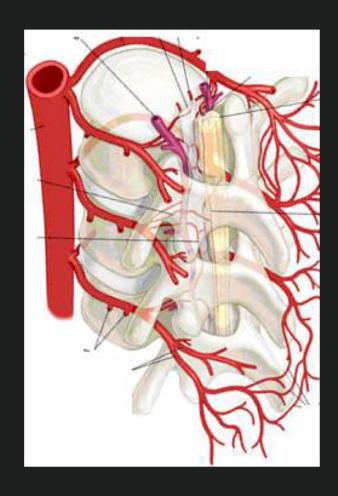

Albert Wojcieh Adamkiewicz (1850–1921)

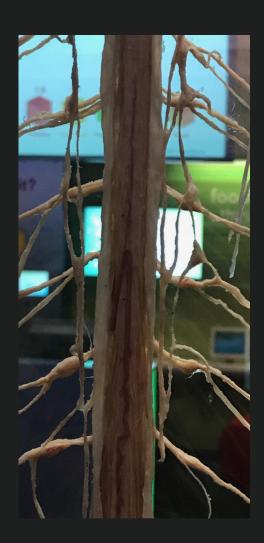
Albert Wojciech Adamkiewicz (1850–1921): unsung hero behind the eponymic artery

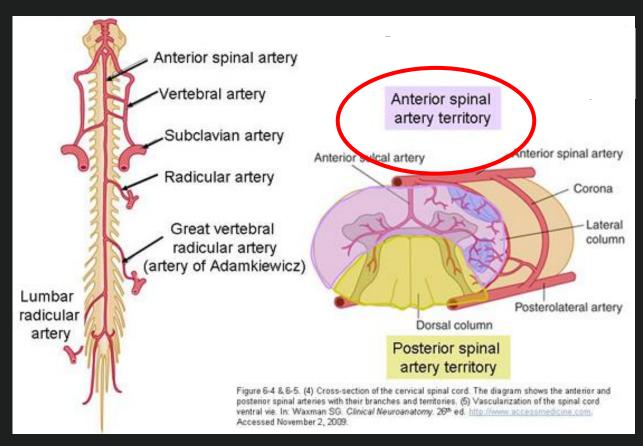

SUNIL MANJILA, M.CH., NIVIN HAROON, M.B.B.S., BRANDON PARKER, B.A., ANDREW R. XAVIER, M.D., MURALI GUTHIKONDA, M.D., AND SETTI S. RENGACHARY, M.D.

Department of Neurosurgery and Division of Endovascular Neurosurgery, Wayne State University School of Medicine and Detroit Medical Center, Detroit, Michigan

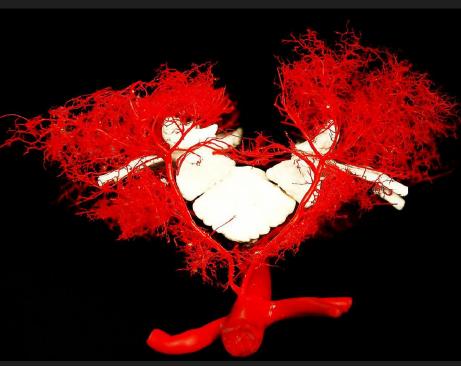
Neurosurg Focus 26 (1):E2, 2009

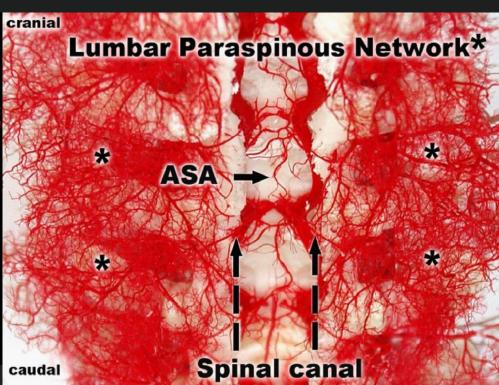



Spinal cord blood supply

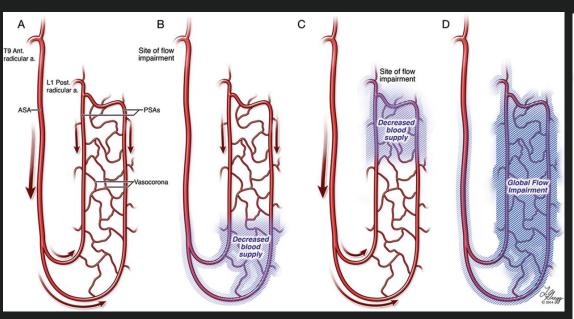


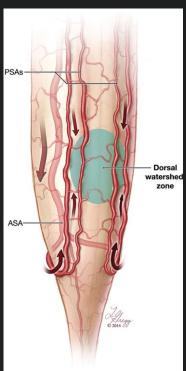
Spinal cord blood supply





Spinal cord collateral network



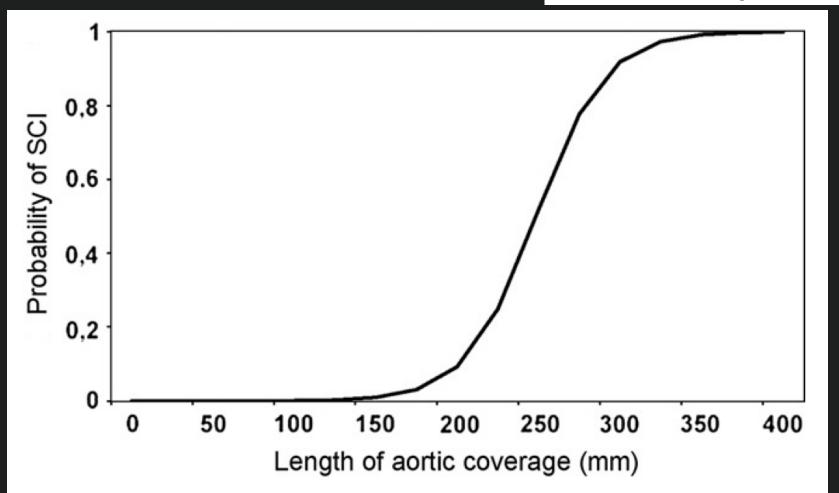

Spinal cord collateral network watershed zones

Periconal arterial anastomotic circle and posterior lumbosacral watershed zone of the spinal cord

Philippe Gailloud, Lydia Gregg, Peter Galan, Daniel Becker, Carlos Pardo

J NeuroIntervent Surg 2014;0:1-6. doi:10.1136/neurintsurg-2014-011408

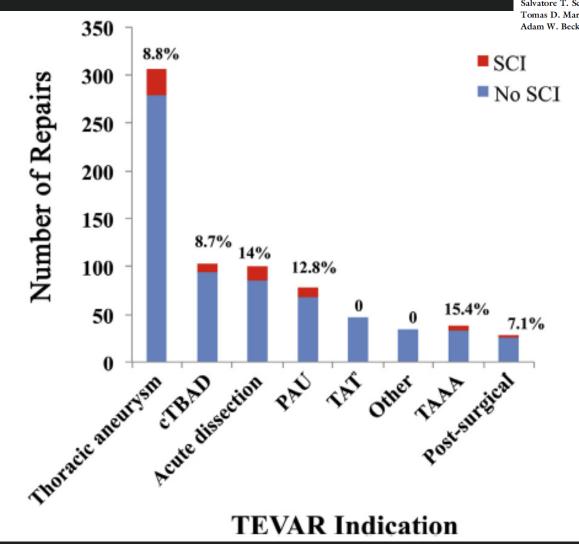
SCI patogenesis



Incidence and Determinants of Spinal Cord Ischaemia in Stent-graft Repair of the Thoracic Aorta

P. Amabile, D. Grisoli, R. Giorgi, J.-M. Bartoli and P. Piquet and P. Piquet

Eur J Vasc Endovasc Surg 35, 455-461 (2008)



68/741 pts.

Preoperative prediction of spinal cord ischemia after thoracic endovascular aortic repair

Salvatore T. Scali, MD, S. Keisin Wang, MD, Robert J. Feezor, MD, Thomas S. Huber, MD, PhD, A Tomas D. Martin, MD, b Charles T. Klodell, MD, Thomas M. Beaver, MD, MPH, and Adam W. Beck, MD, a Gainesville, Fla J Vasc Surg 2014; ■:1-10.

TEVAR Indication

Spinal cord ischemia after endovascular repair of thoracoabdominal aortic aneurysms with fenestrated and branched stent grafts

J Vasc Surg 2015; 1-7.

Athanasios Katsargyris, MD, ^a Kyriakos Oikonomou, MD, ^a George Kouvelos, MD, ^a Hermann Renner, MD, ^a Wolfgang Ritter, MD, ^b and Eric L. G. Verhoeven, MD, PhD, ^a Nuremberg, Germany

Variable	SCI (n = 21)	No SCI (n = 180)	P
Age, years	69.8 ± 6.2	68.2 ± 7.7	.25
Female gender	5/21 (23.8)	39/180 (21.7)	.79
Comorbidities	3 - (83 - (84 - 8)	220 (200 (27 3)	24
CAD	16/21 (76.2)	110/180 (61.1)	.24
Hypertension	17/21 (81)	145/180 (80.6)	1.0
PAD	17/21 (81)	67/180 (37.2)	$<.001^{a}$
COPD	8/21 (38.1)	99/180 (55)	.1
Smoking (current or past)	17/21 (81)	111/180 (61.7)	.1
Diabetes mellitus	1/21 (4.8)	16/180 (8.9)	1.0
Renal insufficiency (GFR <30 mL/min)	5/21 (23.8)	11/180 (6.1)	.016a
Hypercholesterolemia	17/21 (81)	127/180 (70.6)	.44
ASA class ≥3	19/21 (90.5)	137/180 (76.1)	.17
Previous aortic surgery	9/21 (42.9)	84/180 (46.7)	.82
Acute repair	1/21 (4.8)	16/180 (8.9)	1.0
Extent of repair	-/ (/		
Length of stent graft coverage, mm	328 ± 81	301 ± 75	.175
Percentage of aortic coverage, %	82 ± 17	75 ± 17	.122
Operative data			
Operation time >300 minutes	12/21 (57.1)	28/180 (15.6)	$<.001^{a}$
Fluoroscopy time, minutes	80 (35-240)	68 (15-160)	.016ª
Estimated blood loss, mL	500 (200-2000)	380 (80-2500)	.001a
Contrast volume, mL	240 (120-400)	200 (80-500)	.049ª

21/201 pts. (10,4% survivors)

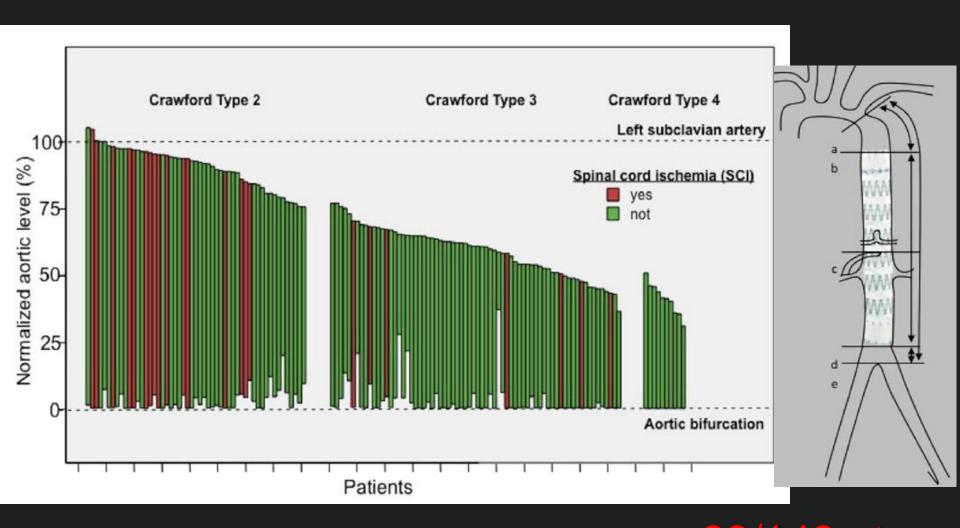
Risk factors for spinal cord ischemia after endovascular repair of thoracoabdominal aortic aneurysms

J Vasc Surg 2015;61:1408-16

Theodosios Bisdas, MD, PhD, Giuseppe Panuccio, MD, Masayuki Sugimoto, MD, Giovanni Torsello, MD, PhD, and Martin Austermann, MD, Münster, Germany

Table VI. Univariate analysis of risk factors for spinal cord ischemia (*SCI*) after endovascular repair of thoracoabdominal aortic aneurysm (*TAAA*)

Potential risk factors	No SCI $(n=119)$	SCI (n = 23)	P value
Male gender	97 (82)	15 (65)	.096
Age, years	70 ± 7	70 ± 9	.943
Arterial hypertension	112 (94)	21 (91)	.639
Diabetes mellitus	16 (13)	1 (4)	.308
Coronary artery disease	2014	8 (35)	.99
Hyperlipidemia	2 5/61 4 2	10 (44)	.167
Tobacco use	69 (58)	14 (61)	.99
Chronic obstructive pulmonary disease	32 (27 (16,2%))	7 (30)	.800
Peripheral arterial vascular disease	36 (30)	9 (39)	.465
Carotid artery disease	29 (29)	6 (30)	.99
GFR $<$ 15 mL/min/1.73 m ² or dialysis	7 (6)	1 (4)	.99
ASA class 4	86 (72)	19 (83)	.437
Symptomatic aneurysms	12 (10)	5 (22)	.220
Postdissection aneurysm	10 (8)	3 (13)	.443
Previous TEVAR	31 (26)	11 (48)	.047
Intraoperative SAP <90 mm Hg ≥15 minutes	4 (3)	3 (13)	.087
Intraoperative MAP <70 mm Hg ≥15 minutes	30 (26)	10 (44)	.127
Endoleak on postoperative CTA	48 (46)	12 (55)	.224
One hypogastric artery occluded	17 (14)	5 (23)	.343
CSFD preoperatively	52 (44)	12 (52)	.498
Crawford classification	, ,	, ,	
Type II	38 (32)	16 (70)	
Type III	69 (58)	7 (30)	.002
Type IV	12 (10)	0	
Catecholamines, µg/kg/min	0.10 ± 0.09	0.14 ± 0.10	.024
Blood transfusion, units	0.50 ± 1.17	1.09 ± 1.31	.034
Duration of procedure, minutes	267.6 ± 67.4	293.2 ± 51.4	.870
Maximum TAAA diameter, mm	64.1 ± 13.1	67.5 ± 13.5	.252
Coverage of thoracic aorta, %	54 ± 27	77 ± 28	.001
Coverage of total aorta, %	67 ± 18	83 ± 19	.001
Proximal free aorta, %	31 ± 19	16 ± 19	.001

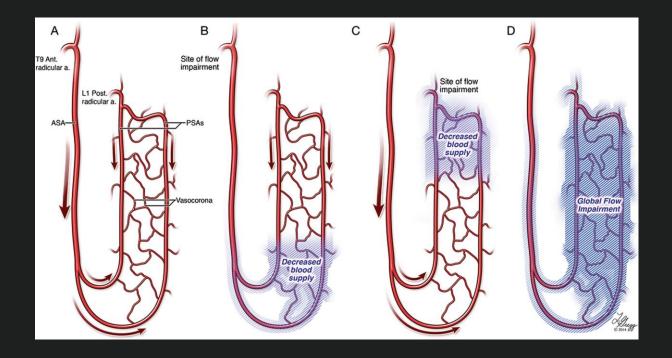

ASA, American Society of Anesthesiologists; CSFD, cerebrospinal fluid drainage; CTA, computed tomography angiography; GFR, glomerular filtration rate; MAP, mean arterial pressure; SAP, systolic arterial pressure; SD, standard deviation; TEVAR, thoracic endovascular aortic repair.

Data are presented as number (%) or mean ± standard deviation.

Risk factors for spinal cord ischemia after endovascular repair of thoracoabdominal aortic aneurysms J Vasc Surg 2015;61:1408-16

Theodosios Bisdas, MD, PhD, Giuseppe Panuccio, MD, Masayuki Sugimoto, MD, Giovanni Torsello, MD, PhD, and Martin Austermann, MD, Münster, Germany

- Avoid extensive aorta coverage
- ✓ Mean arterial pressure > 90 mmHg
- Hemoglobine
- Early pelvic r
- √ "Staged" repa
 - To consid
 - Contraind
 - ✓ Current per current per
- CSF drainage



Only postoperativelly if neurologic deficite

- Avoid extensive aorta coverage
- Mean arterial pressure > 90 mmHg

Avoid extensive aorta coverage

Mean arterial pressure > 90 mmHg

✓ Hemoglobine control >10-12 g/dl

- Avoid extensive aorta coverage
- ✓ Mean arterial pressure > 90 mmHg
- ✓ Hemoglobine control >10-12 g/dl
- Early pelvic reperfusion

Eur J Vasc Endovasc Surg (2015) 49, 248-254

Editor's Choice — The Impact of Early Pelvic and Lower Limb Reperfusion and Attentive Peri-operative Management on the Incidence of Spinal Cord Ischemia During Thoracoabdominal Aortic Aneurysm Endovascular Repair

B. Maurel ^a, N. Delclaux ^a, J. Sobocinski ^a, A. Hertault ^a, T. Martin-Gonzalez ^a, M. Moussa ^a, R. Spear ^a, M. Le Roux ^a, R. Azzaoui ^a, M. Tyrrell ^b, S. Haulon ^a, *

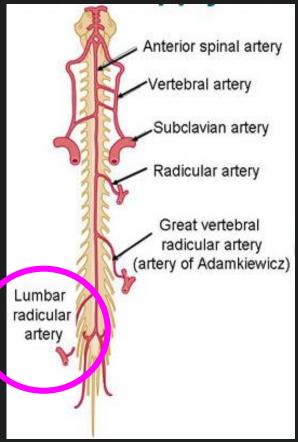


Table 3. Thirty day outcomes of patient with type I, II, and III thoracoabdominal aortic aneurysms.

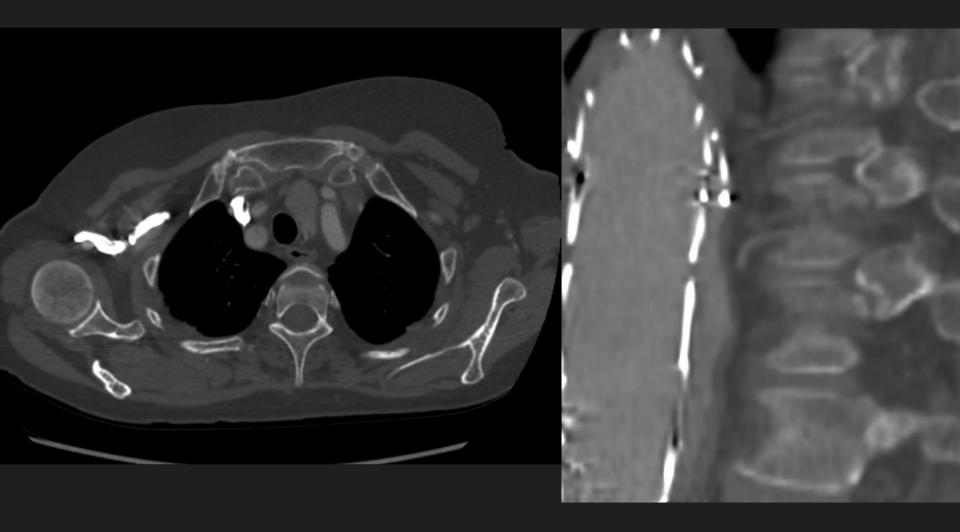
	Group 1 $(n = 24)$	Group 2 ($n = 95$)	RR (95% CI)	р			
Major complications	12 (50.0)	27 (28.4)	1.4316 (0.9409-2.1781)	.04			
Spinal cord ischemia	6 (25.0)	2 (2.1)	1.3053 (1.0341-1.6475)	<.001			
30 day mortality	5 (20.8)	7 (7.4)	0.3537 (0.1229-1.10175)	.00			
Minor complications	8 (33.3)	30 (31.9)	1.0213 (0.7454-1.3993)	.54			
<i>Note.</i> Values are given as n (%). RR = relative risk; CI = confidence interval.							

^a Aortic Centre, Hôpital Cardiologique, CHRU de Lille, INSERM U1008, Université Lille Nord de France, 59037 Lille Cedex, France

b King's Health Partners, London, UK

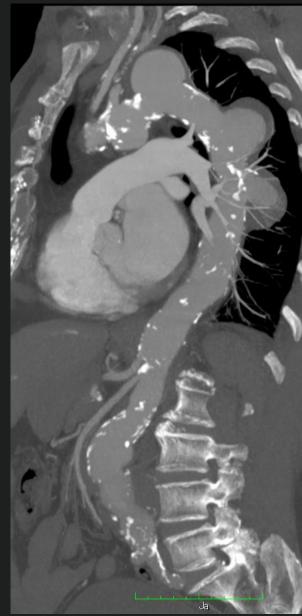
- Avoid extensive aorta coverage
- ✓ Mean arterial pressure > 90 mmHg
- Hemoglobine control >10-12 g/dl
- Early pelvic reperfusion
- √ "Staged" repair:
 - Contraindication symptomatic aneurysm
 - ✓ To consider TAAA type 2 (MISACE?)
 - ✓ Current policy only if intraoperative problems

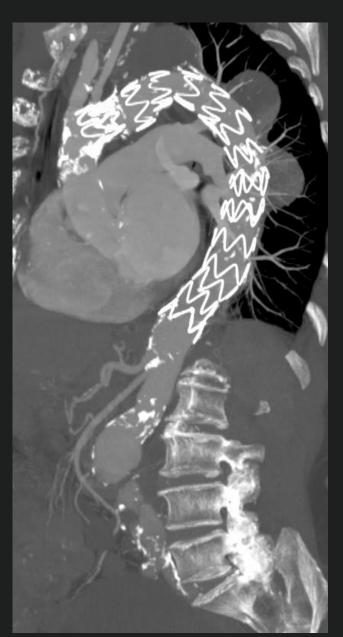
Editor's Choice — Temporary Aneurysm Sac Perfusion as an Adjunct for Prevention of Spinal Cord Ischemia After Branched Endovascular Repair of Thoracoabdominal Aneurysms CME


P.M. Kasprzak *, K. Gallis, B. Cucuruz, K. Pfister, M. Janotta, R. Kopp

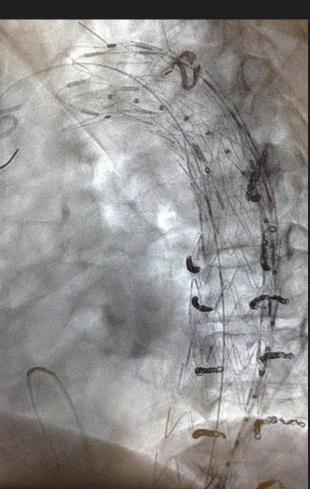
Department of Surgery, Vascular and Endovascular Surgery, University Hospital, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany

EL 2 in paraplegic patient





Staged surgery

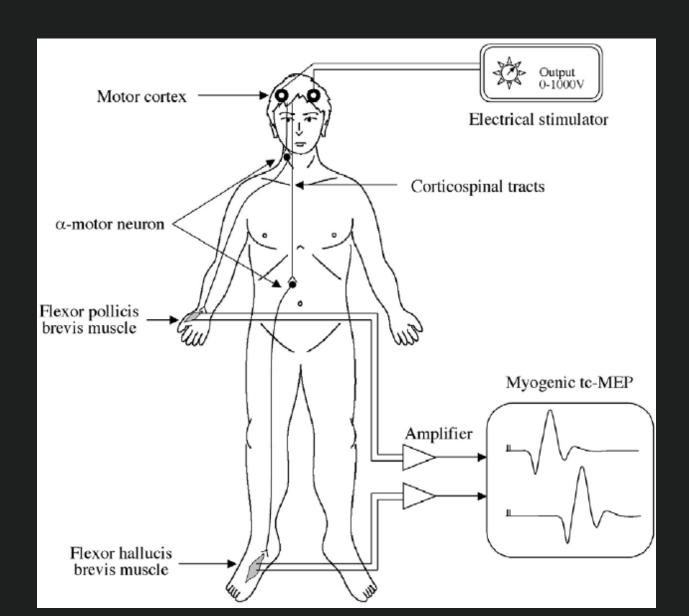


MISACE

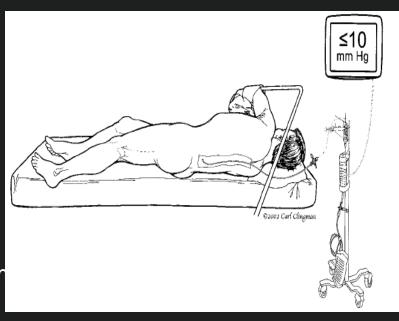
Minimally invasive segment artery coil embolization

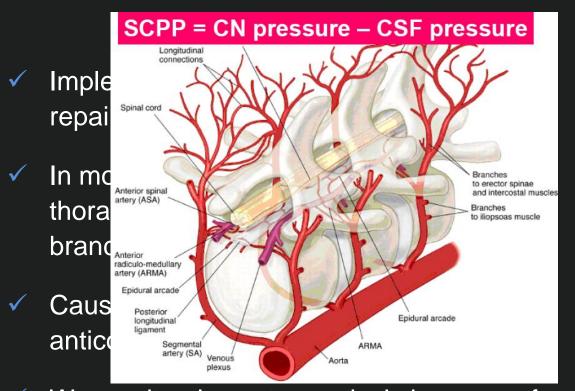
RCT ,PAPAartis'

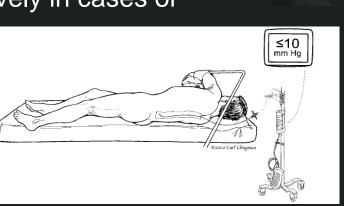
Paraplegia Prevention in Aortic Aneurysm Repair by Thoracoabdominal Staging with 'Minimally-Invasive Segmental Artery Coil-Embolization (MISACE)': A randomized controlled multicentre open-label trial (PAPA-ARTIS)


Principal Investigator: Christian D. ETZ

Courtesy of prof. C. Etz


Motor Evoked Potentials (MEPs)


- Avoid extensive aorta coverage
- ✓ Mean arterial pressure > 90 mmHg
- ✓ Hemoglobine control >10-12 g/dl
- Early pelvic reperfusion
- √ "Staged" repair:
 - Contraindication symptomatic aneurysr
 - ✓ To consider TAAA type 2 (MISACE?)
 - ✓ Current policy only if intraoperative problems
- CSF drainage:
 - Only postoperativelly if neurologic deficite



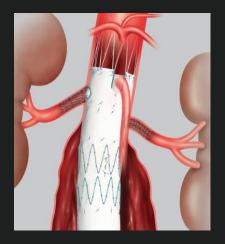
Cerebro-spinal fluid drainage

We use it only postoperatively in cases of spinal cord ischemia

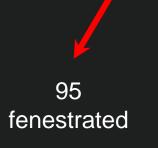
Anticoagulation protocol

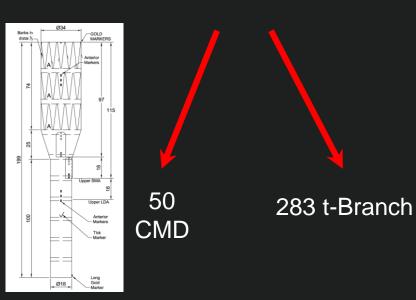
- Preoperative: LMWH in cases with coagulation cascade activation (d-dimers elevation)
- ✓ Intraoperatively: unfractionated heparin under the control of ACT (about 250 sec)
- ✓ Postoperatively: unfractionated heparin infusion APTT increase 2-2,5 x
- ✓ In case of necessity of SCFD
- After 48h triple / double anticoagulation (ASA, LMWH, Clopidogrel)
- ✓ At discharge anti-plated therapy: ASA, Clopidogrel (+/-)

436


Department of General, Vascular and Transplant Surgery

Medical University of Warsaw, Poland

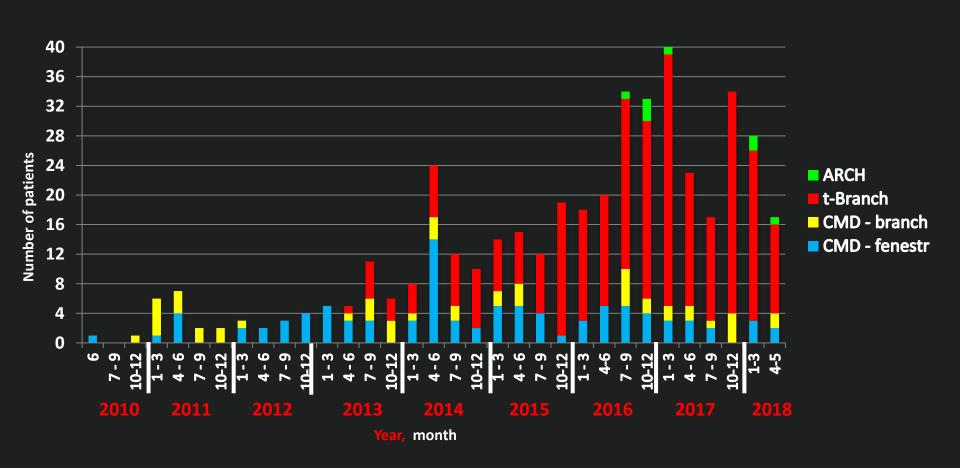

complex aortic aneurysms


treated from 11.06.2010 to 30.05.2018



8 arch

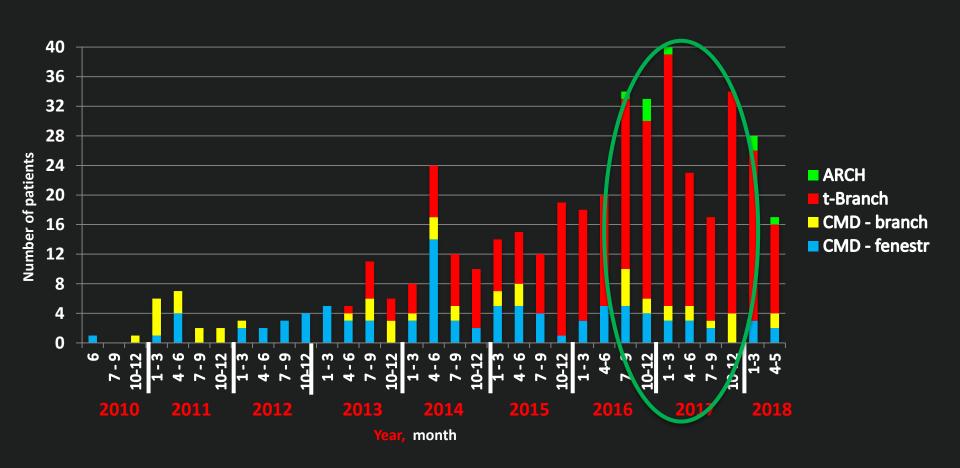
95 333 juxtarenal thoracoabdominal



Department of General, Vascular and Transplant Surgery Medical University of Warsaw, Poland

complex aortic aneurysms

treated from 11.06.2010 to 30.05.2018


436

Department of General, Vascular and Transplant Surgery Medical University of Warsaw, Poland

complex aortic aneurysms

treated from 11.06.2010 to 30.05.2018

Material

- 200 consecutive patients treated endovascularly due to para- or suprarenal aneurysm during 21 months (between May 15-th 2016 and February 15-th 2018)
- Fenestrated devices for short infrarenal neck only (4-10 mm)
- All other aneurysms (juxtarenal and thoracoabdominal) treated with branched devices with preference to t-b
- ✓ Mean age was 72.4 years,
- √ 150 male and 50 female, (25%!)
- 20 fenestrated and 180 branched devices
- ✓ 58 urgent operations (ruptured or symptomatic aneurysm or diameter >90mm – all = t-branch)
 and 142 planned (20 fen + 122 branched).

Results

- Overall 30-day mortality 20/200 (10%)
 - √ 10/142 planned (7,04%)
 - √ 10/58 urgent (17,24%)
- ✓ paraplegia 5/180 (2,78%) (all in branched!)
 - √ 3/132 planned (2,27%)
 - √ 2/48 urgent (4,17%)
- ✓ renal insuficiency requiring dialysis 2/200 (1%)
- ✓ good short-time result (hospital discharge, no paraplegia or dialysis) 173/200 (86,5%)

Summary

- ✓ Paraplegia due to SCI after bEVAR is still a serious problem
- ✓ We have some adjuncts to effectively decrease it's rate
- Precise plan, high volume experience and multidisciplinary team work is crucial to avoid paraplegia after TAAA treatment
- ✓ However every patient should be informed about the risk of this complication

Prevention of spinal cord ischemia in (branched) TEVAR

Tomasz Jakimowicz

Department of General, Vascular and Transplant Surgery Medical University of Warsaw, Poland Head: prof. Sławomir Nazarewski