

RE-INTERVENTION FOR TYPE 2 ENDOLEAK

Francesco Torella Liverpool Vascular & Endovascular Service

DISCLOSURES

Research grant, educational support, consultancy

Educational grant

Johnson Johnson Abbott Medical Optics

Speaker's fees

T2EL AND AAA RUPTURE

T2EL caused 7% of post EVAR ruptures

Table 4.	Reasons for Aneurysm	Rupture in	190 EVAR
Patients. ^a			

Type la endoleak	49 (26)
Type la eliudicak	47 (20)
Type Ib endoleak	27 (14)
Type II endoleak	14 (7)
Type III endoleak	26 (14)
Type IV endoleak	I (0.5)
Endotension	3 (2)
Combination of endoleaks	7 (4)
Unspecified type I endoleak	23 (12)
Unspecified endoleak	5 (3)
Unspecified reason	8 (4)
Other	
Migration	12 (6)
Kinking	I (0.5)
Expansion/rupture of CIA aneurysm	2 (1)
Structural disintegration of the device	I (0.5)
Not reported	11 (6)

Abbreviation: CIA, common iliac artery. ³Data are given as the counts (percentage).

EUROSTAR – PREDICTORS OF AAA RELATED DEATH POST EVAR (3992 PATIENTS)

	HR	95%CI	Р
Current device	.52	.3579	.0011
AAA diameter	1.03	1.01-1.04	.0005
Age	1.09	1.06-1.12	<.0001
Unfitness for open surgery	2.25	1.5-3.3	<.0001
Isolated type II endoleak	0.09	0.02-0.63	0.016

Factors <u>not</u> associated with aneurysm related death: team experience, neck diameter, male sex, transfemoral intervention for isolated type II endoleak

MEANWHILE, IN THE REAL WORLD...

RUPTURED RIGHT INTERNAL ILIAC ANEURYSM

87 🖧 frail

Unstable

"Normal" aorta, CIA/EIA

Associated ilio-femoral DVT

RUPTURED RIGHT INTERNAL ILIAC ANEURYSM

87 ♂, frail

Unstable

Associated ilio-femoral DVT

Treated with reversed Excluder limb

Good recovery

FOLLOW UP

Type II endoleak

AAA growth

WHAT NOW?

ATTEMPTED EMBOLISATION

ATTEMPTED EMBOLISATION

Ruptured DCIA during instrumentation

Procedure abandoned

Referred back to Liverpool

OPTIONS

Conservative management

Embolization

Transarterial

Femoral access Brachial/radial access Gluteal access

Direct AAA puncture

Trans-lumbar Trans-abdominal

Direct suture/ligation

Laparotomy

Laparoscopy

FURTHER ATTEMPT

Right femoral approach

Access to DCIA

Silverspeed 10, Progreat

Navicross

END RESULT

END RESULT

MANAGEMENT OPTIONS FOR T2EL

Conservative management

Embolization

Transarterial

Femoral access Brachial/radial access Gluteal access

Direct AAA puncture

Trans-lumbar Trans-abdominal

Direct suture/ligation

Laparotomy

Laparoscopy

THE EVIDENCE

Systematic review

British Journal of Surgery 2013; 100: 1262-1270

Type II endoleak after endovascular aneurysm repair

D. A. Sidloff¹, P. W. Stather¹, E. Choke¹, M. J. Bown^{1,2} and R. D. Sayers¹

¹Vascular Surgery Group, Department of Cardiovascular Sciences, University of Leicester, and ²Leicester National Institute for Health Research Cardiovascular Biomedical Research Unit, Leicester, UK

Correspondence to: Mr D. A. Sidloff, Vascular Surgery Group, Department of Cardiovascular Sciences, University of Leicester, Leicester LE2 7LX, UK (e-mail: ds343@le.ac.uk)

1515 T2EL393 interventions (28.5% unsuccessful)0.9% caused ruptureRupture not associated with AAA growth

Embolisation

Technical success: TL 81% > TA 62.5% (P=0.024) Recurrent EL: TL 19% < TA 35.8% (P=0.036) Complications: TL none < TA 9.2% (P=0.043)

SMA-middle colic-left colic-IMA

DCIA-ILA-fourth lumbar

IIA-lateral sacral-median sacral

CFA branch-obturator-IIA

SMA-middle colic-left colic-IMA

DCIA-ILA-fourth lumbar

IIA-lateral sacral-median sacral

CFA branch-obturator-IIA

SMA-middle colic-left colic-IMA

DCIA-ILA-fourth lumbar

IIA-lateral sacral-median sacral

CFA branch-obturator-IIA

SMA-middle colic-left colic-IMA

DCIA-ILA-fourth lumbar

IIA-lateral sacral-median sacral

CFA branch-obturator-IIA

DIRECT AAA PUNCTURE

Translumbar

Vs

Transabdominal

LAST RESORT

IS IT JUST AN ISOLATED TYPE II ENDOLEAK?

TYPE 2 ENDOLEAK

Rarely causes AAA rupture

Rarely needs treatment

Embolization does not always work

Access route for embolization should be chosen on the basis of individual patient anatomy

