

DESs FOR BELOW THE KNEE OCCLUSIVE DISEASE

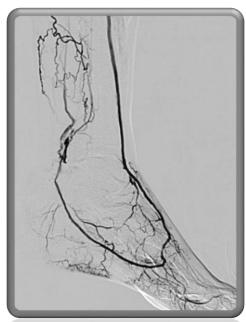
2018

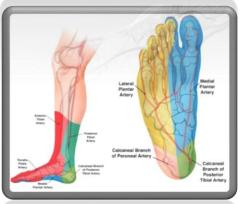
ACTUAL BTK TREATMENT STRATEGY

- 1. Rueda et al. J Vasc Surg. 2008
- 2. Norgren et al. TASC II. J Vasc Surg. 2007
- 3. update of the TASC II and latest ESVS guidelines
- 4. Tendera et al. ESC Guidelines. Eur Heart J. 2011

BTK occlusions¹:

- ≥ 50% of CLI patient
- ≥ 70% of CLI patients with diabetes mellitus or end-stage renal disease

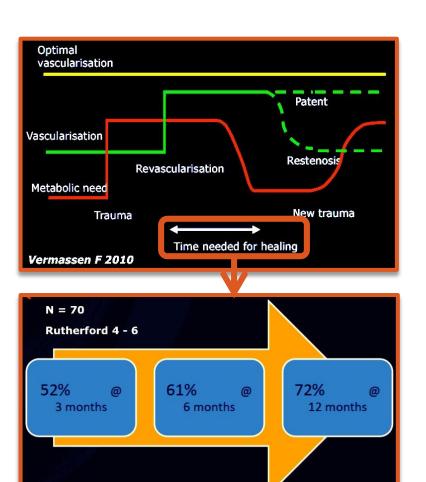

Poor prognosis²:


- 25% of primary major amputations
- 20% of chronic pain
- 25% of mortality at 1 year

→ ENDOVASCULAR FIRST³

- POBA
- ± bailout BMS spot scaffolding⁴ in case of
 - Elastic recoil
 - Flow limiting dissection

THERAPEUTIC ENDPOINTS⁵



- Achieve and MAINTAIN straight-line flow to the foot :
 - Aggressive strategy :
 - « 3 better than 2 »
 - Retrograde access if needed
 - Reconstruction of plantar arch
 - Angiosome concept⁶:
 - possible in ~ 50% of cases
- To:
 - Relieve ischemic pain
 - Permit healing
 - Prevent amputation

^{5.} Tsetis et al. J Radiol. 2004

^{6.} lida et al. Catheter Cardiovasc Interv Off J Soc Card Angiogr Interv. 2010

HIGH RESTENOSIS RATES

- Poor durability of acute results due to vessel re-narrowing⁷
 - restenosis at 1 year after POBA
 - 36%8 to 74%9
 - There is a general agreement that POBA is suboptimal in virtually every arterial bed, and this is especially true in BTK lesions
- "the value of perfusion to an ischemic limb should not be decreased" 11
- Extended Patency is needed for wound healing
 - Average Time To Healing :
 - 6 months to 1 year¹⁰
- 7. lida et al. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg. 2012
- 8. Zeller et al. IN.PACT DEEP, J Am Coll Cardiol, 2014
- 9. Liistro et al. DEBATE-BTK. Circulation, 2013
- 10. Hoffman et al. EJVES 2007
- 11. Schneider et al. does perfusion matter or not. 2016

WHY SCAFFOLDING AND DURG ELUTION?

BTK lesions

- very complex
- risk factors predicting poor outcomes
 - small vessel diameter,
 - lesion length,
 - chronic kidney disease,
 - diabetes,
 - poor runoff

BTK calcification patterns

- calcifications involving tibial vessels extend through multiple layers across the vessel from the intima to the adventitia¹
- Contribute to the suboptimal results noted with POBA,
- and in theory, limit the success of DCBs

The management of below-the-knee arterial critical ischemia: update, systematic review and meta-analysis

Caroline CARADU, Dorothée TROMBERT, Dominique MIDY, Eric DUCASSE *

Unit of Vascular Surgery, Hopital Tripode, Universitary Hospital of Bordeaux, Bordeaux, France

*Corresponding author: Eric Ducasse, Department of Vascular Surgery Tripode-Pellegin Hospital, Bordeaux. E-mail: eric.ducasse@chu-bordeaux.fr

- DESs use as a primary strategy in short focal lesions (average treated lesion length of 4 to 6 cm)
- Considerable advantage for DESs over POBA, DCBs and bare metal stents in terms of
 - TI R
 - binary restenosis
 - and primary patency rates
 - with up to 3-year results

5 STUDIES WITH LONG-TERM RESULTS

2 showed improved patency BUT no significant difference on mortality and limb salvage vs BMSs

Karnabatidis et al.¹³ – 3 years

TABLE 3
Cumulative Proportional Outcomes at 3 Years

	Group XP	Group C	p*	HR (95% CI)	Adjusted p†	
Patient survival	82.2%	65.7%	0.90	<u> </u>	_	
Major amputation-free						
survival	77.1%	86.9%	0.20	_	_	
Inflow primary patency	31.4%	0.0%	0.004	2.921 (1.360 to 6.273)	0.006	
Infrapopliteal primary		<u></u>				
patency	29.7%	20.6%	< 0.0001	7.984 (3.694 to 17.254)	< 0.0001	
In-lesion binary						
restenosis	90.8%	87.8%	0.005	2.943 (1.736 to 4.990)	< 0.0001	
TLR-free survival	81.1%	67.5%	0.041	2.796 (1.230 to 6.357)	0.014	
Major event-free						
survival	34.9%	12.1%	0.013	2.191 (1.162 to 4.131)	0.015	
						•

■ Siablis et al.¹⁴ – 3 years

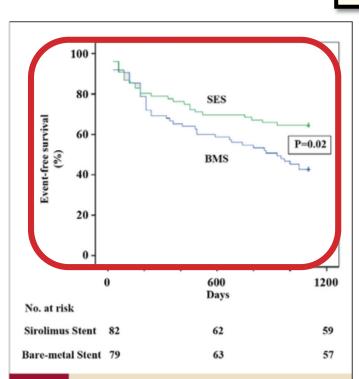
Table 5
Angiographic and Clinical Cumulative Proportion Outcomes of SES and BMS at 3 Years after Bivariable and Multivariable Analysis

intuitivuitubie ilituiyoto						
Outcome	SES Group (%)	BMS Group (%)	<i>P</i> Value*	HR†	95% CI	Adjusted <i>P</i> Value
Primary patency	32.9	17.1	<.001	4.81	2.91-7.94	<.001
In-stent binary restenosis	81.1	96.0	<.001	0.38	0.25 - 0.58	<.001
In-lesion binary restenosis	83	95.6	<.001	0.45	0.29 - 0.68	<.001
Recurrent obstruction	14.8	67.4	<.001	0.15	0.08 - 0.29	<.001
Repeat intervention–free survival	77.6	70.3	.049	2.56	1.3-5.0	.006
Recurrent obstruction	14.8	67.4	<.001	0.15	0.08-0.29	<.001

- 11. Feiring et al. PARADISE trial. J Am Coll Cardiol. 2010
- 12. Werner et al. J Endovasc Ther Off J Int Soc Endovasc Spec. 2012
- 13. Karnabatidis et al. J Endovasc Ther Off J Int Soc Endovasc Spec. 2011
- 14. Siablis et al. J Vasc Interv Radiol JVIR. 2009

2 non comparative trials

- Werner et al.¹² 60 months
 - major amputations = 2.8%
 - primary patency = 83.8%
 - RC improvement = 92%
- PARADISE trial¹¹ 3 years
 - major amputation = 8%
 - TLR = 15%
 - binary restenosis = 12%


YUKON trial - 3 years results

Sirolimus-Eluting Stents for Treatment of Infrapopliteal Arteries Reduce Clinical Event Rate Compared to Bare-Metal Stents

Long-Term Results From a Randomized Trial

Aljoscha Rastan, MD,* Klaus Brechtel, MD,† Hans Krankenberg, MD,‡ Rainer Zahorsky, MD,§ Gunnar Tepe, MD,|| Elias Noory, MD,* Uwe Schwarzwälder, MD,* Roland Macharzina, MD,* Thomas Schwarz, MD,* Karlheinz Bürgelin, MD,* Sebastian Sixt, MD,‡ Thilo Tübler, MD,‡ Franz-Josef Neumann, MD,* Thomas Zeller, MD*

Bad Krozingen, Tübingen, and Hamburg, Germany

Figure 1 Event-Free Survival in the SES and BMS Groups

Survival free from target vessel revascularization, major and minor amputation, myocardial infarction, and death was compared by Kaplan-Meier analysis with the use of the Mantel-Cox log-rank test. BMS = bare-metal stent(s); SES = sirolimus-eluting stent(s).

Table 2

Rutherford-Becker Class at Baseline and at Follow-Up of the Overall Patient Population and of Each Treatment Group

Rutherford-Becker Class at Follow-Up

	(N = 86)	(n = 44)	(n = 42)	
Median (IQR)	2 (1 to 3)	2 (1 to 3)	2 (2 to 3)	0.02
Improvement by ≥1 class	62 (72.1)	37 (84.1)	25 (59.5%)	
No change	22 (25.6)	7 (15.9)	15 (35.7%)	
Worse by ≥1 class	2 (2.3)	0 (0)	2 (4.8%)	
Median change	-1 (-3 to 0)	-2 (-3 to -1)	-1 (-2 to 0)	0.006

Values are n (%) or median (interquartile range [IQR]).

Table 3

Major Adverse Events and Limb Salvage at Follow-Up in Patients With Critical Limb Ischemia and Intermittent Claudication

Critical Limb Ischemia	SES (n = 38)	BMS (n = 31)	p Value
Death	10 (26.3)	10 (32.3)	0.60
Major/minor amputation	1/1 (5.3)	4/3 (22.6)	0.04
TVR	4 (10.5)	4 (12.9)	0.70
Myocardial infarction	0 (0)	2 (6.4)	0.20
Limb salvage	37 (97.4)	27 (87.1)	0.10

2 STUDIES WITH LONG LESIONS

■ PARADISE trial¹¹ – 3 years

- Mean lesion length 60mm
- Mean number of stents/limb 1.9
- Primary patency 88%
- Limb salvage 92%

Karnabatidis et al.¹³ – 3 years

- Mean lesion length 76mm
- Mean number of stents/limb 3.2
- Primary patency: 29.7% vs 33.9% for shorter lesions (<33mm)
- Limb salvage: 84.3% vs 77.1% for shorter lesions (<33mm)

DESs could be of interest in long lesions

BUT balloon expandable stents = risk of stent fractures and compressions¹⁵

^{11.} Feiring et al. PARADISE trial. J Am Coll Cardiol. 2010

^{13.} Karnabatidis et al. J Endovasc Ther Off J Int Soc Endovasc Spec. 2011

^{15.} Schulte et al. EXPAND study. J Endovasc Ther Off J Int Soc Endovasc Spec. 2015

CASE 2 **♂ 63-year old**Rutherford-4

Courtesy of Prof. Dimitrios Karnabatidis MD, PhD, EBIR Prof. Panagiotis Kitrou MD, MSc, PhD

TAKE HOME MESSAGE

- The accumulated body of evidence supporting the use of DESs in the treatment of focal infrapopliteal disease is impressive
- Recent randomized trials have demonstrated remarkably consistent results in improving patency and reducing binary restenosis and TLR
- The BEST-CLI and BASIL 2 trials will hopefully answer the question of whether optimal surgery for selected patients with good quality saphenous vein is a better choice than endovascular therapy
- Future challenges will be to extend this evidence to demonstrate a definitive limb salvage advantage and to apply the technology across the full spectrum of disease patterns, including long segment occlusions and tibial bifurcations