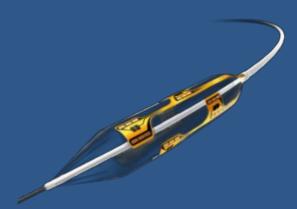
HTH Technology Matters. Return on experience The Vessix technology

Piero Montorsi, MD

Department of Clinical Sciences and Community Health,
University of Milan, School of Medicine
Centro Cardiologico Monzino, IRCCS - Milan, Italy

MEET. Nice, France June 8-10, 2014

Faculty disclosure


I disclose the following financial relationships:

I have no financial relationships to disclose.

Vessix Renal Denervation System

- Balloon-based technology
 - 4 to 7 mm diameters
 - Helical pattern of bipolar radiofrequency electrodes
- 30 second treatment time
- All electrodes are activated simultaneously

- Bipolar energy delivery, ~1
 Watt
- Temperature-controlled algorithm
- ensures energy delivery at 68°C
- One button operation

VessixTM System: *Intuitive User interface*

Splash Screen

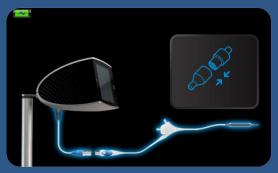
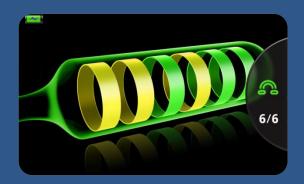
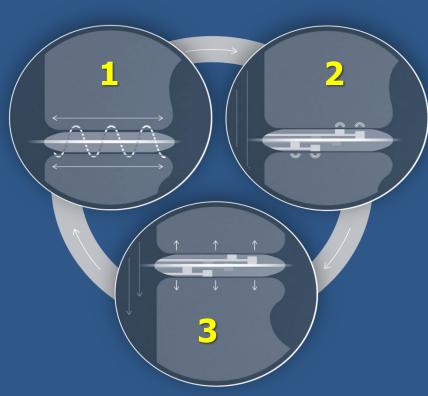



Image flashes prompting user to connect catheter

Confirms catheter is connected

Electrode pairs light up to confirm apposition inside renal artery


Treatment screen, indicates temperature, time, power, and # of electrodes treating

End of treatment screen, displaying average treatment temperature, time, power and # of electrodes activated

VessixTM System Attributes

Fixed Pattern
Vessix System treats
the full length of the
artery in a fixed
helical pattern

Bipolar
Bipolar electrodes on a balloon platform enable targeted, temperature controlled energy delivery

Balloon

Balloon provides firm vessel apposition of electrodes and occludes blood flow, for predictable treatment

The Vessix™ System: Treatment of the full length of artery

Automatic de-activation of unapposed electrodes

For longer length renal arteries, 1-2 treatments can be applied Balloon inflated to a maximum of 3 Atm

Renal Denervation Technologies

	BSC Vessix	MDT Flex	MDT Spyral	STJ EnligHTN	JNJ RenLane
Catheter Design	Balloon catheter, 4-8 electrodes	Single electrode	Pigtail Catheter, 4 electrodes	Basket, 4 electrodes	Pigtail Catheter, 5 electrodes, irrigated
Balloon	✓				
Guidewire	✓		✓		✓
Energy	Bipolar RF	Monopolar RF	Monopolar RF	Monopolar RF	Monopolar RF
Power	~1W	~ 8W	6.5W	8W	Unknown
Total Treatment Time	1-2 min.	16-24 min.	2-4 min.	4 min.	Unknown

Boston Scientific Renal Denervation Program

Vessix™ Global Clinical Program

> 1200 Patients planned worldwide

REDUCE-HTN Clinical Series

Studies evaluating the Vessix System technology in the currently defined hypertension space:

- REDUCE-HTN FIM Study
- REDUCE-HTN Post Market Study
- REDUCE-HTN Global Pivotal Study
- REDUCE-HTN Regional Reg. Approval Studies
- REDUCE-HTN EU Post Market Trial

RELIEVE Clinical Series

Includes pre-clinical, clinical and investigator initiated research evaluating the Vessix System technology in additional disease states:

- RELIEVE End Stage Renal Disease
- RELIEVE Heart Failure
- RELIEVE Atrial Fibrillation
- RELIEVE Diabetes

REDUCE-HTN Clinical Sites

_	R	ΕI	Clinic
er			
rs			
rt			

Institution	Principal Investigator	FIM+Post-Market S
Parcelsus Medical University	Prof. Dr. Uta C. Hoppe	
Allgemein Affentliches Krankenhaus der Stad Linz	Prof. Dr. Clemens Steinwender	
Onze-Lieve-Vrouwziekenhuis, (OLVZ)	Dr. Eric Wyffels	
Monash Heart Southern Health	Prof. Dr. Ian Meredith	
CardioVasculares Centrum (CVC) Frankfurt	Prof. Dr. med Horst Sievert	
George Pompidou Hospital	Prof. Dr. Michel Azizi	
The Prince Charles Hospital	Associate Prof. Darren Walters	
Cardiology Center Geneva university Hospitals	Dr. Georg Ehret	
Auckland City Hospital	Dr. Mark Webster	
Flinders Medical Centre	Dr. Ajay Sinhal	
Erasmus Medical Center	Dr. Joost Daemen	
Vascular Center Berlin	Dr. Ralf Langhoff	
Main Tanus Kliniken	Prof. Dr. med. Nicolaus Reifart	
St. Vincent's	Dr. David Muller	
Zentrum für Gefäßmedizin	Prof. Dierk Scheinert	
Academic Medical Center	Prof. Robbert-Jan de Winter	
Cliniques Universitaires Saint Luc	Prof. dr. Alexandre Persu	
Clinique Pasteur	Prof. Jean Fajadet	
German Heart Centre	Prof. Dr. med. Ilka Ott	
Universitäres Herz- und Gefäßzentrum Hamburg	Prof. Dr. med. Joachim Schofer	
Zentralklinik Bad Berka GmbH	Dr. med. Ahmed Farah	
Royal Adelaide Hospital	Prof. Steven Worthley	
Mercy Angiography - Auckland	Dr. John Ormiston	

REDUCE-HTN FIM+PMS

FIM (N=18)

REDUCE-HTN
FIM + PMS (N=146)

PMS (N=128)

Key Inclusion Criteria

- Office-based blood pressure (average of 3 readings):
 - First in Man (FIM): systolic blood pressure ≥ 160 mmHg
 - Post-Market Study (PMS): systolic/diastolic ≥ 160/90 mmHg
- ≥ 3 antihypertensive drugs at maximally tolerated doses with stable regimen for at least 2 weeks prior to enrollment
- Renal artery length:
 - FIM: ≥ 20 mm
 - PMS: ≥ 15 mm
- Renal artery without significant stenosis (i.e., baseline diameter stenosis <30%)
- Main renal artery diameter of ≥ 3.5 mm and ≤ 7.0 mm for each kidney:
 - FIM: Single renal artery
 - PMS: Subjects with accessory renal arteries were enrolled

Efficacy Measures

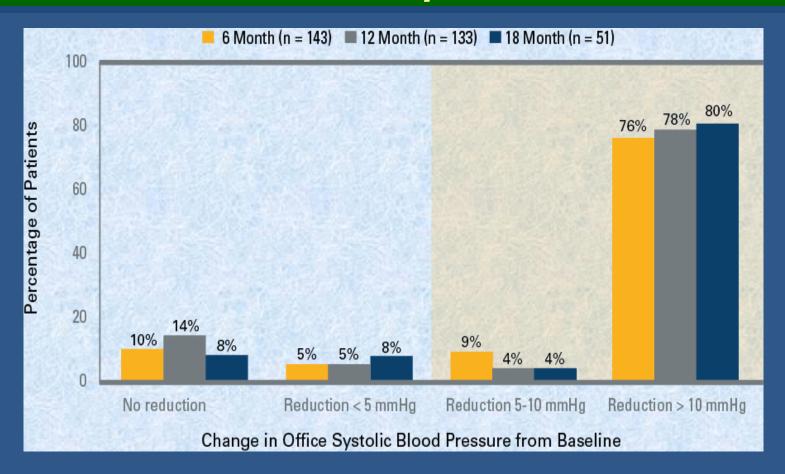
- Office blood pressure (through 18 months)
- 24-hour ambulatory blood pressure (6 and 12 months)

35% of patients (51/146) have completed 18 month follow-up to date

Baseline Demographic and Clinical Characteristics

N=146	
Demographic Characteristics	
Age (years)	58.5±10.5
Gender (male)	61.0%
Ethnic origin (white)	92.5%
Comorbidities	
Type 2 diabetes	28.1%
Coronary artery disease	37.7%
Dyslipidemia	58.2%
Congestive heart failure	2.1%
Blood Pressure	
Systolic blood pressure (mmHg)	182±18
Diastolic blood pressure (mmHg)	100±14
Kidney Function	
eGFR (mL/min/1.73 m ²)	82.7±22.5
Serum creatinine (μmol/L)	82.0±20.0

18 month f/u results

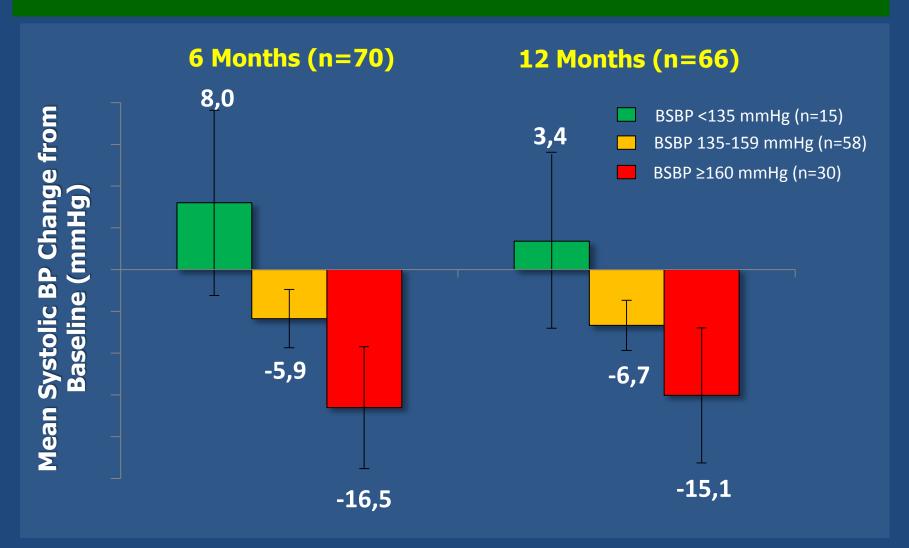


■ Change in Office Systolic BP ■ Change in Office Diastolic BP

18 month f/u results Rate of Responders

80% had a clinically meaningful response (ie, reduction >10 mmHg) based on office systolic blood pressure at 18 months

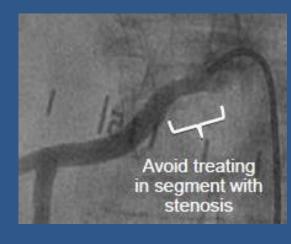
18 month f/u results 24H ABPM

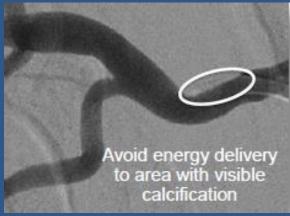


Change in Systolic ABPChange in Diastolic ABP

153/88 mmHg (N=103)

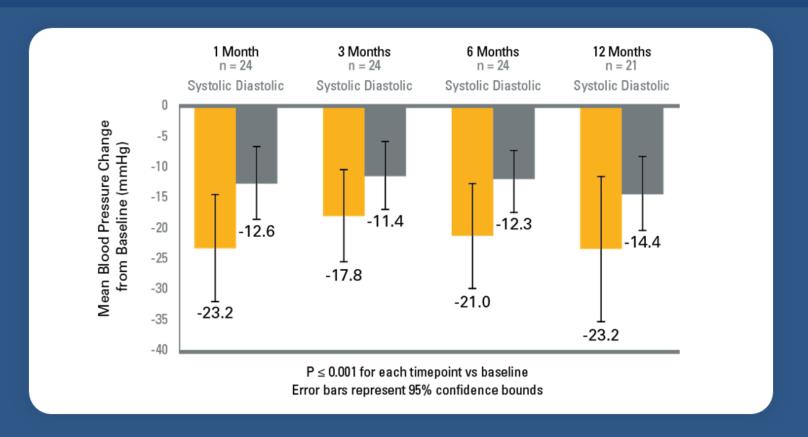
18 month f/u results 24H ABPM


REDUCE-HTN Study Anatomic Consideration


- Flow limiting stenosis
- Artery Diameter
 - Standard is ≥4mm
 - Vessix is ≥3mm
- Artery Length
 - Standard is ≥20mm
 - Vessix is ≥15mm
- Absence of Stent(s)

REDUCE-HTN Study Anatomic Consideration: areas to avoid

Avoid treating areas of visible disease



REDUCE-HTN Study Anatomic Consideration: RA size

Recommended Catheter Sizing Table				
Artery Size	3.0 – 4.0mm	3.8 – 5.0mm	4.7 – 6.0mm	5.6 – 7.0mm
4mm balloon	Yes	X	X	X
5mm balloon	X	Yes	X	X
6mm balloon	X	X	Yes	X
7mm balloon	X	X	X	Yes

The Vessix catheter can treat arteries as small as 3mm

REDUCE-HTN Study Anatomic Consideration: Treated accessory RAs

Preliminary Ambulatory BP 12 month data in 12 patients with treated accessory renal arteries show a mean reduction of 5.7/4.0 mmHg

REDUCE-HTN Study

Conclusion-1

Office-based blood pressure measurements over long-term follow-up in the REDUCE-HTN study continue to show significant reductions

- > Preliminary 18-month results (N=51) show a mean office blood pressure reduction of 30.2/12.7 mmHg
- ➤ Preliminary 12-month data for the subgroup of patients with treated accessory renal arteries (N=21) show a mean reduction of 23.2/14.4 mmHg

REDUCE-HTN Study

Conclusion-2

24-hour ambulatory blood pressure measurements through 12 months in the REDUCE-HTN study support sustained efficacy of the Vessix System in treating resistant hypertension

- ➤ Preliminary 1-year results (N=66) show a mean pressure reduction of 8.5/5.5 mmHg
- ➤ Preliminary 12-month data for the subgroup of patients with treated accessory renal arteries show a mean reduction of 5.7/4.0 mmHg

Case # 1

- 57 yom
- Family history of HTN and premature CAD
- HTN, HyperCh, previous smoker, obesity
- Type 2, NIDDM
- 2001 Hemispheric TIA → first detection of severe HTN
- 2007 AAA (<4 cm) in f/u with ultrasound
- 2013 Normal renal anatomy and ultrasound Doppler assessment
- Refractory HTN despite: metoprolol 100 mg x 2, Amlodipine 10 mg x 2, Telmisartan/hydroclorotiazide 80/12.5 x 2, Spironolattone 50 mg/day
- 175 cm x 108 Kg, BMI >35
- BP on admission: 160/100 mmHg
- Blood chemistry: glucose 135 mg%, renal 35/0.86/3.88/94 ml/', cholesterol 169/41/91, Trygliceride 186, TSH 2.5
- Rest ECG: aspecific ST-T abnormality.
- <u>Echocardiogram</u>: mild LVH. LA dilation (51/24). Normal EF: 62%
 Absence of diastolic dysfunction

Ambulatory BP monitoring data


Baseline 11/6/2013

Office BP: 200/120 mmHg (S) 180/120 mmHg (U)

SAP: 187±15 mmHg DAP: 107±17 mmHg HR: 77±9 bpm

Renal arteries angiography

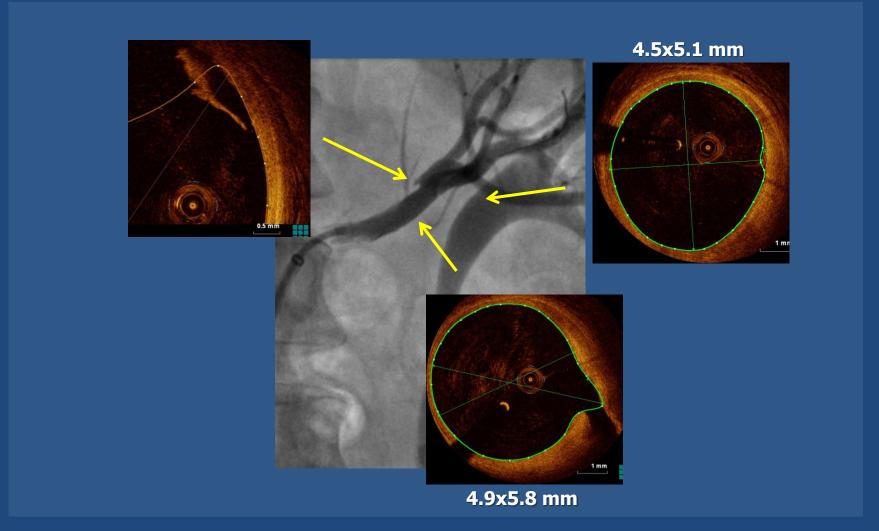
Right renal artery

Left renal artery

^{*} ISA: inferior suprarenal artery

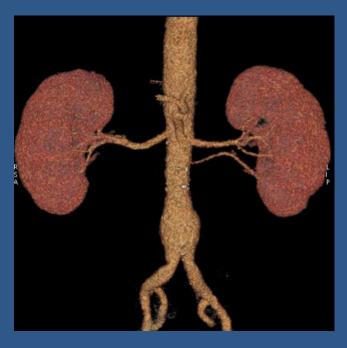
Renal artery denervation procedure

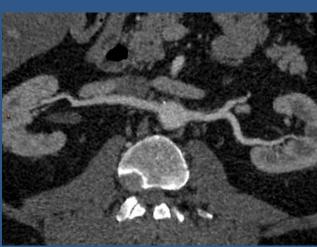
Right RDN, 3 amt inflation. (Test for occlusion)



Post-RDN (x2 inflations)

Left artery denervation procedure

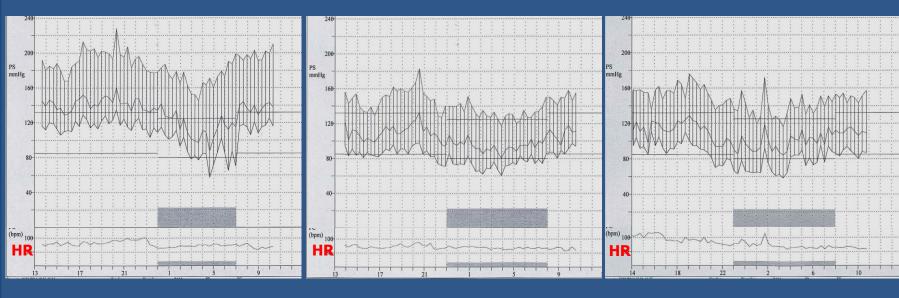

Left renal artery denervation Angiographic and OCT findings



OCT catheter: C7 Dragonfly™ LightLab Imaging Inc., Westford, MA, USA

Follow-up CT-Angiography

1/23/2014



Office & Ambulatory BP monitoring data in the F/u

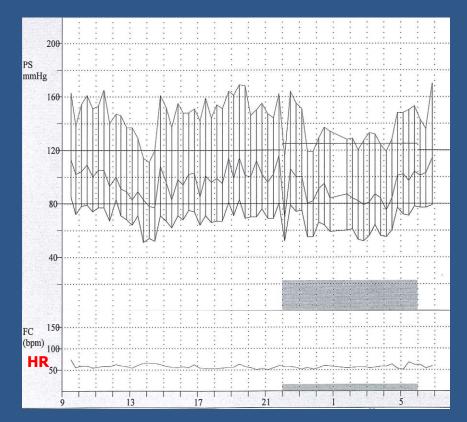
30 days post-RDN Office BP: 140/85 mmHg

90 days post-RDN Office BP: 130/85 mmHg

SAP: 187±15 mmHg DAP: 107±17 mmHg HR: 77±9 bpm SAP: 142±13 mmHg DAP: 81±9.1 mmHg HR: 70±6 bpm SAP: 147±13 mmHg DAP: 84±13 mmHg HR: 80±17 bpm

Medical treatment unchanged

Case # 2 Moderate Resistant Hypertension

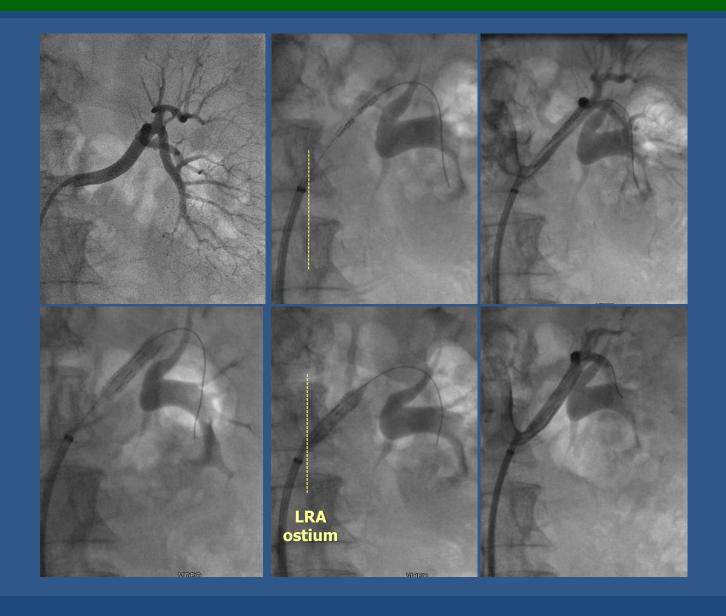

Definition: Office BP >140/90 mmHg and <160/100 mmHg ABPM ≥ 130/80 mmHg (Ott C et al. JACC 2013)

- 69 yom
- Family history of HTN and diabetes
- HyperCh, previous smoker, obesity
- Type 2, NIDDM
- 2011Hypertension
- Refractory HTN despite: olmesartan 40 mg/day, Amlodipina 10 mg/day, Atenolol 100 mg/day, Amiloride+Triamterene ½ cp, Metformin 500 mg x 2
- 100 cm x 163 Kg, BMI >35
- Office BP: 170/90 mmHg
- Blood chemistry: glucose 148 mg%/7.8% HbA1c, renal
 63/1.09/>60 GFR, cholesterol 215/48/101, Trygliceride 332
- Rest ECG: within normal limits.
- Echocardiogram: Mild LVH (17/12 mm). LA dilation. EF: 73%

Ambulatory BP monitoring data

Baseline, 10/23/2013

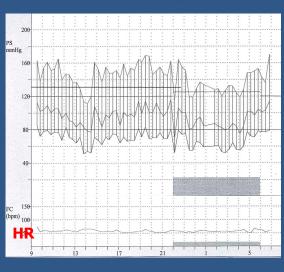
Office BP: 185/90 mmHg (S) 180/80 mmHg (U)



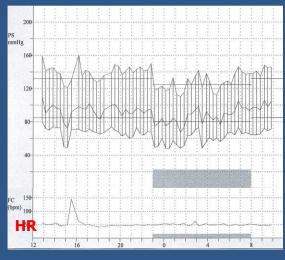
SAP: 144±15 mmHg DAP: 68±9 mmHg HR: 57±4 bpm


RDN Procedure: Right renal artery

RDN Procedure: Left renal artery

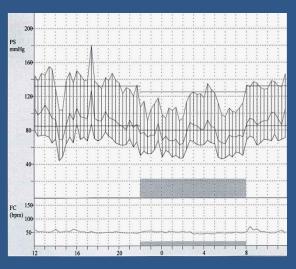

RDN Procedure: Right renal artery

RDN at the right renal artery ostium (second site of energy erogation)


Office & Ambulatory BP monitoring data in the F/u

Baseline OBP:170/90

SAP: 144±15 mmHg DAP: 68±9 mmHg HR: 57±4 bpm


30 days post-RDN OBP: 140/80

SAP: 134±11 mmHg DAP: 64±8 mmHg HR: 51±12 bpm

90 days post-RDN

SAP: 125±18 mmHg DAP: 63±10 mmHg HR: 51±5 bpm

Take home messages

- Both patients with true resistant hypertension & moderate resistant hypertension may be candidates for RDN
- The Vessix technology appears to be safe and effective. Non-flow limiting dissections of renal arteries may be found, likely due to balloon inflation distal to major artery bifurcation.
 - Spontaneous sealing of this dissections occurrs as shown in the CTA after 1 month w/o clinical complications.
- Sustained BP reduction was observed up to 3 month-F/U