

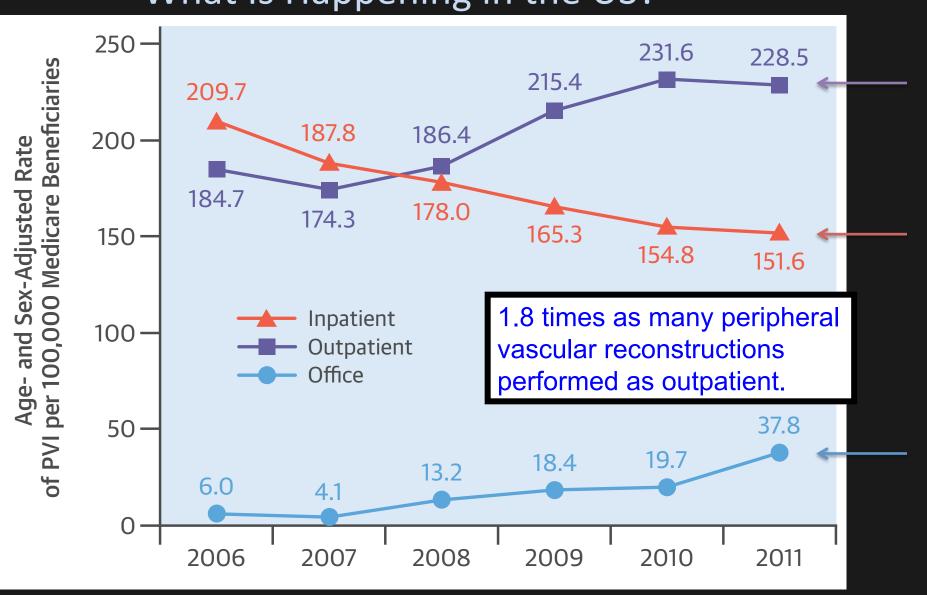
Ambulatory management of PAD: This is "state-of-the-art"

Peter A. Schneider, MD Kaiser Foundation Hospital Honolulu, Hawaii

Disclosure of Interest

Peter A. Schneider

I have the following potential conflicts of interest to report:


- Noncompensated advisor: Cardinal, Abbott, Medtronic
- Royalty: Cook (modest)
- Co-founder and Chief Medical Officer: Intact, Cagent
- Board member: VIVA (nonprofit)

Ambulatory Management of PAD Rationale

- Goal: Send patients home day of procedure
- Patient comfort
- Efficient use of resources
- Must be same or better quality and safety
- Is it safe?
- What are the pitfalls?
- Hospital outpatient or office based lab?

Peripheral Vascular Interventions What Is Happening in the US?

Jones et al. J Am Coll Cardiol 2015;65:920

Ambulatory Management of PAD Procedures to Consider

Preferentially treated as outpatients in our practice

- Arterial
 - Subclavian
 - Iliac
 - -SFA
 - BTK
- Varicose vein surgery
- Dialysis access creation/revision
- Embolizations

Ambulatory Management of PAD Procedures to Consider

Which ones are treated as inpatients?

- Arterial
 - Subclavian
 - Iliac
 - SFA
 - BTK
- Varicose vein surgery
- Dialysis access intervention
- Embolizations

Inpatient IMA graft >8Fr Bad foot Bad foot Forced elevation Inpt dialysis Pain control

Lower Extremity Interventions Patient Selection: Medical Exclusions

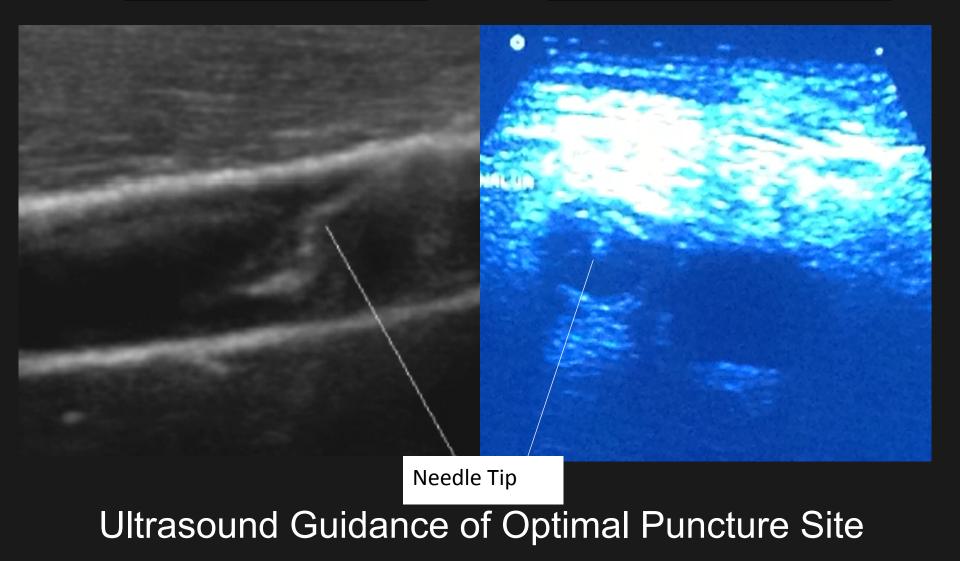
- Active cardiac/pulmonary decompensation
- Significant dementia
- Bleeding diathesis
- Active requirement for anticoagulation
- Not AAA or carotid or renovasc (BP management)

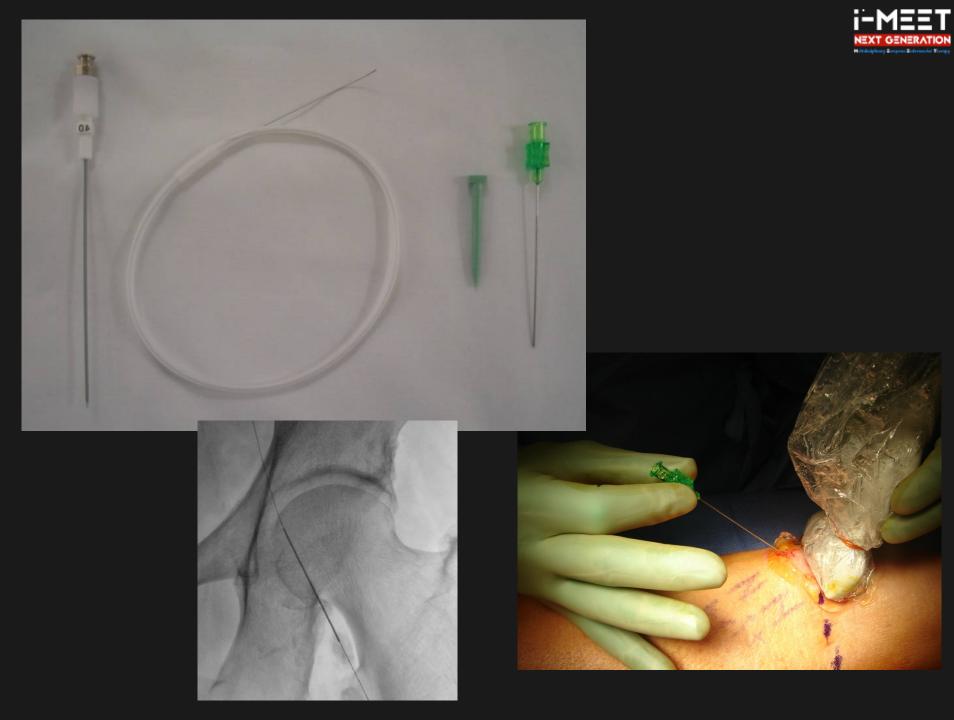
Lower extremity Interventions Patient Selection: Social Issues

- Compliant
- Lives with someone, even if temporary
- Must have companion for transportation
- At least minimally ambulatory

Lower Extremity Interventions Setting Expectations

- "Almost everyone who has this done goes home on the same day"
- Arrangements made pre-op
 - Companion identified
 - Approx time of procedure determines dischg time
 - Neighbor Island flight arrangements
 - Follow up appointment


Ambulatory Management of PAD Lower Extremity Interventions


- Local anesthesia with sedation
- Perfect Access
 - Ultrasound guidance
 - Micropuncture
- Perfect Closure
 - Closure device
 - Stitch at puncture site

Longitudinal/In-plane

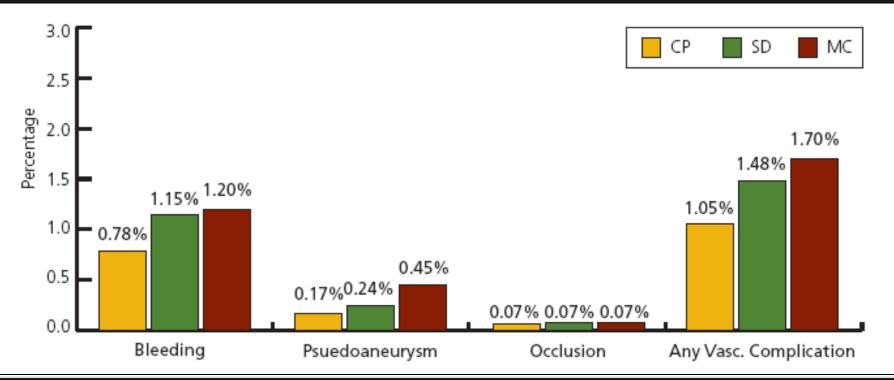
Transverse/Out-of-plane

Ultrasound Guidance: Reduced Complications Retrograde Femoral Approach

Variable	Palpation- guided $(n = 100)$	US-guided $(n = 108)$	P value				
Technical success rate	96 (96%)	108 (100%)	0.052				
Median number of attempts	1 (1–5)	1 (1–3)	0.001				
The first pass success rate	78 (78%)	101 (93.5%)	0.001				
Mean time to access (sec)	94.3 ± 66.4	68.6 ± 45.1	0.001				
Additional sedoanalgesia	18 (18%)	16 (15%)	0.182				
Complication rate	4 (4%)	0 (0%)	0.052				
(local hematoma)							
Gedikoglu, et al. Catheter C Intervent 2013 Jan, epub.	ardiovasc	Complication	l	Fluoros (n = 5		Ultrasound (n = 503)	p Value
	He	ematoma ≥5 cm		11 (2.2	2%)	3 (0.6%)	0.034
	Ps	eudoaneurysm		0		1	NS
	Di	ssection		3		2	NS
		Access bleeding, transfusion				1	NS
Hen		matoma with DVT		1		0	NS
	Ar	ny complication		17 (3.4	1%)	7 (1.4%)	0.041

Seto, et al. JACC Cardiovasc Intervent. 2010;3:751.

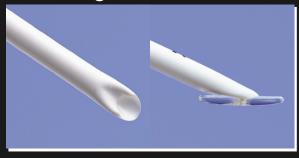
Rationale


Ultrasound Guidance>Micropuncture>Closure

- Reduce access site complications

 Lower risk of hematoma, bleeding, AV fistula
 Single puncture, first pass, single wall
 Avoid-branches, calcification, lesions
- Optimal use of closure
 - Avoid arterial access site disease
 - Best choice of closure

Closure Devices


>166,000 patients from 214 institutions

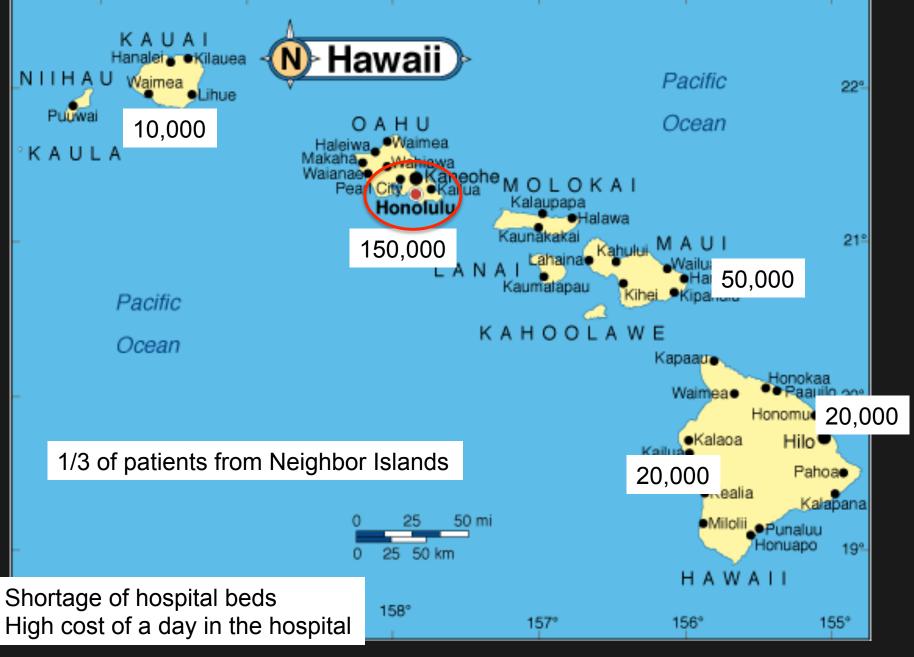
Both collagen plug and suture mediated devices were better than manual compression: 26% RR reduction of complications overall, and 38% with collagen plug.

Closure Devices Collagen Plug or Suture Mediated

Angio Seal

Angio-Seal™ VIP Device

ProGlide



Ambulatory Management of PAD Lower Extremity Interventions

- Stay for 4 hours
- Ambulate
- Private car or Shuttle to airport
- Last flight to Wailuku Maui, Kona or Hilo
 - Stay in a hotel near the airport and go the next morning

Lower Extremity Interventions How Many Patients Can't Go Home?

Reference	Ν	Coverted to Inpt	Readmit	Total
JVS 2008	113	0	7%	7%
JVS 2006	120	4%	0	4%
Clin Radiol	57	10%	0	10%
Cardiovasc Interv Radiol	214	7%	3%	10%

O'Brien-Irr et al. J Vasc Surg 2008;47:982 Akopian and Katz J Vasc Surg 2006;44:115 Wilde et al. Clin Radiol 2006;61:1035 Macdonald et al. Cardiovasc Intervent Radiol 2002;25:403

Ambulatory Management of PAD Critical Limb Ischemia

- 50% of our CLI patients
- Typically on aspirin and clopidogrel
- Dry gangrene, open wound with dressings or wound vac

- No systemic signs of infection
- No undrained local infection

Ambulatory Management of PAD Potential Savings

Total cost is significantly less for ambulatory/outpatient, whether procedure is performed in OR or radiology suite

Procedure Indirect cost Total cost setting No. Direct cost Direct cost In-patent 5089 ± 600 2243 ± 432 \$7331 ± \$764 RS 24 $$4169 \pm 584 OR 47 6593 ± 457 87861 ± 8467 $$4417 \pm 192 $12,278 \pm 595$ Ambulatory RS 75 3122 ± 191 $3572 \pm 197 \quad 2142 \pm 126$ $$5714 \pm 245 OR 38 $$5109 \pm 511 $$5572 \pm 523 2019 ± 108 \$7591 ± \$616 P .001 < .001< .001< .001

Outpatient procedure reduced the cost by 22% to 38%

O'Brien-Irr et al. J Vasc Surg 2008;47:982

Peripheral Vascular Interventions in the US Ambulatory Management = Less Expensive

TABLE 4 Total Costs of Peripheral Vascular Intervention by Procedure, Setting, and Year*

Setting	2006	2007	2008	2009	2010	2011
Atherectomy						
Inpatient	11,342 \pm 4,295	11,688 \pm 4,094	$\textbf{12,583} \pm \textbf{4,568}$	$\textbf{13,122} \pm \textbf{5,511}$	$\textbf{12,945} \pm \textbf{6,896}$	11,446 \pm 6,383
Outpatient	$\textbf{2,763} \pm \textbf{1,920}$	$\textbf{3,226} \pm \textbf{2,291}$	$\textbf{5,720} \pm \textbf{3,732}$	$\textbf{6,790} \pm \textbf{3,909}$	7,204 \pm 4,142	8,680 ± 4,970
Office	-†	-†	-†	-†	-†	$13,478 \pm 4,768$
Stent						
Inpatient	11,589 \pm 4,179	11,960 \pm 4,796	11,994 \pm 3,825	12,550 \pm 4,634	$\textbf{12,901} \pm \textbf{6,351}$	12,466 \pm 7,077
Outpatient	$\textbf{4,367} \pm \textbf{2,541}$	$\textbf{4,562} \pm \textbf{2,756}$	$\textbf{6,012} \pm \textbf{3,329}$	$\textbf{6,858} \pm \textbf{3,356}$	7,341 \pm 3,693	$\textbf{5,982} \pm \textbf{3,639}$
Office	1,678 \pm 1,724	$\textbf{1,432} \pm \textbf{1,502}$	$\textbf{5,402} \pm \textbf{2,643}$	$\textbf{5,543} \pm \textbf{2,292}$	$\textbf{5,542} \pm \textbf{1,914}$	6,379 \pm 2,986
Angioplasty						
Inpatient	11,044 \pm 3,736	11,554 \pm 3,904	11,796 \pm 3,739	11,820 \pm 4,674	11,623 \pm 3,590	13,197 ± 4,711
Outpatient	$\textbf{2,374} \pm \textbf{1,441}$	$\textbf{2,361} \pm \textbf{1,568}$	$\textbf{2,734} \pm \textbf{1,670}$	$\textbf{3,164} \pm \textbf{1,738}$	$\textbf{3,437} \pm \textbf{1,902}$	$\textbf{3,742} \pm \textbf{2,014}$
Office	3,789 ± 1,520	$\textbf{3,511} \pm \textbf{1,478}$	$\textbf{3,781} \pm \textbf{1,566}$	$\textbf{3,472} \pm \textbf{1,400}$	3,546 ± 1,551	4,800 ± 2,028

Values are in U.S. dollars and are presented as mean \pm SD. *Costs include professional and facility costs and patient deductibles and coinsurance. †The Centers for Medicare & Medicaid Services cell size suppression policy stipulates that no cell containing data for fewer than 11 observations may be displayed.

Outpatient interventions decreased the cost by approximately 50%

Jones et al. J Am Coll Cardiol 2015;65:920

Ambulatory Management of PAD Hospital Outpatient vs Office Based Lab

Hospital Outpatient

- Access to hospital
- Hospital rules and regulations
- Payment issues
- Availability of anesthesia

Office Based Lab

- Specific criteria for transfer to hospital
- Minimal backup
- More responsibility to develop policies and procedures and standards of care

Ambulatory Management of PAD Safety of Office-Based Lab

All registered nurses and physicians are certified in Advance Cardiac Life Support. For conscious sedation, hospital guidelines adapted for the office are followed. Triage criteria have evolved to identify patients not suitable for an office procedure: weight >400 pounds, American Society of Anesthesiologists Physical Status Classification 4, those with a history of contrast anaphylaxis, those who require general anesthesia, and those with a previous bad experience. Patients who are already admitted to the hospital undergo the procedure in the hospital.

>400 Office based labs in the US Outpatient Endovascular and Interventional Society (OEIS)

Jain et al. J Vasc Surg 2014;59:186

Office Based Lab

Complications

18,963 cases	fr	om	Ja	n 2014-S	ept	2015
Variance:		2	014	J	lanS	Sept. 2105
Sentinel Events:		<u>10</u>	0.09%		<u>4</u>	0.05%
Death		6	0.06%		3	0.04%
Wrong Site		2	0.02%		1	0.01%
Loss of Limb		2	0.02%		0	0.00%
Loss of Function		0	0.00%		0	0.00%
Transfers		31	0.21%		25	0.30%
Falls		2	0.02%		3	0.04%
Infections		9	0.08%		3	0.04%
All Complications	<u>66</u>	0.6	<u>1%</u>	<u>48</u>	0.5	<u>9%</u>
Return to Surgery/Lab		13	0.03%		18	0.22%
Hematoma		27	0.25%		15	0.18%
MI		2	0.02%		0	0.00%
Stroke		1	0.01%		2	0.02%
Other		23	0.21%		13	0.16%

Jeff Carr LINC 2016

Table I. Total procedures by type

Procedure	No. (%)
Eistulo anna	
Fistulograms Fistulogram—angioplasty	1704 (63)
Fistulogram—thrombectomy—angioplasty	582 (21)
Fistulogram	260(10)
Fistulogram—angioplasty—coiling	51 (2)
Fistulogram—coiling	47(2)
Fistulogram—angioplasty—stent	45(1)
Fistulogram—thrombectomy—angioplasty—stent	$\frac{13}{26}(1)$
Fistulogram—thrombectomy	20(1) 2(<1)
Fistulogram—angioplasty—coiling—stent	1 (<1)
Fistulogram—stent	1 (<1) 1 (<1)
Aortograms	1 (<1)
Aortogram, runoff	498 (53)
Aortogram, runoff, angioplasty	234 (25)
Aortogram	73 (8)
Aortogram, runoff, angioplasty, stent	61 (6)
Atherectomy	45 (5)
Aortogram, runoff, stent	21 (2)
Aortogram, angioplasty, stent	2(<1)
Cerebral angiogram	5(<1)
Catheters	. ,
Removal	773 (52)
Insertion	410 (28)
Exchange	291 (20)
Cathetergram	3(<1)
Venous	
EVLT-microphlebectomy	512 (50)
EVLT	390 (38)
Microphlebectomy	110(11)
Radiofrequency ablation	4(<1)
Radiofrequency ablation-microphlebectomy	3(<1)
Venograms	
Venogram	55 (87)
Venogram—angioplasty	7 (11)
Venogram—angioplasty—stent	1(2)
PowerPorts ^a	
Insertion	148 (80)
Removal	31 (17)
Exchange	4 (2)
PowerPortgram	1(<1)
Inferior vena cava filters	
Filter removal	47 (82)
Filter placement	10 (18)
Total	6458 (100)

Office Based Lab Procedures

6400 procedures over 7 years

_13% of procedures were peripheral vascular Half of these were interventions

Jain et al. J Vasc Surg 2014;59:186

Office Based Lab Complications

Table II. Patient complications and procedures

				Complications per		
Procedure type	Procedures, No.	Patients, No.	Complications, No.	Procedure, %	Patient, %	
Venous	1019	785	22	2.20	2.80	
Aortogram						
No interventions	571	464	4	1		
With interventions	368	191	10	2.70	5.20	
Fistulogram	2719	829	13	0.50	1.60	
Catheters	1477	342	4	0.30	1.20	
Inferior vena cava filters	57	24	1	2	4.20	

Table III. Patients transferred to the hospital

Complication	No.	Transfer, %
Hematoma	9	34.50
Thrombosis	3	11.50
Cardiac	3	11.50
Pseudoaneurysm	2	7.70
Hypotension	2	7.70
Syncope	2	7.70
Hypoxia	1	3.80
Seizure	1	3.80
Bleeding	1	3.80
Dyspnea	1	3.80
Irretrievable wire	1	3.80
Total	26	

0.4% of patients transferred to hospital

About half for bleeding or clotting

5.2% of patients who underwent peripheral interventions were transferred to the hospital

Jain et al. J Vasc Surg 2014;59:186

Ambulatory Management of PAD Conclusion

- Safe and Cost-effective
- Increasing trend
- Requires patient selection and planning.
- Perfect access and closure