

Haemodynamics of the development of varicose vein disease: do we really have new knowledge?

S. Onida, AH. Davies
Department of Surgery and Cancer
Imperial College London

Disclosures

None

Use duplex ultrasound to confirm the diagnosis of varicose veins and the extent of truncal reflux, and to plan treatment for people with suspected primary or recurrent varicose veins.

Varicose veins: diagnosis an management

Clinical guideline

Published: 24 July 2013

nice.org.uk/guidance/cg168

Eur J Vasc Endovasc Surg (2015) 49, 678-737

Editor's Choice — Management of Chronic Venous Disease

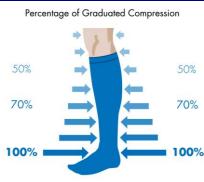
Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS)

Recommendation 11	Class	Level	olm, A. Cavezzi, S. Chastanet, n, T. Noppeney, S. Onida, P . Pittaluga,
Duplex ultrasound is recommended as the primary diagnostic test of choice in	1	Α	us, R. Hinchliffe, I. Koncar, J. Lindholt,
suspected chronic venous disease, to reliably evaluate the specific venous anatomy			ng, E. Kalodiki, E. Korten, M. Lugli,
and to identify the source and pattern of reflux.			15) Li Naidanni, Li Norteri, Wi Lugii,

The care of patients with varicose veins and associated chronic venous diseases: Clinical practice guidelines of the Society for Vascular Surgery and the American Venous Forum

Peter Gloviczki, MD, Anthony J. Comerota, MD, MD, Bo G. Eklof, MD, David L. Gillespie, MD, Monika L. G

Mark H. Meissner, MD, M. Hassan N 2.1 Marc A. Passman, MD, Joseph D. Raf Thomas W. Wakefield, MD, Rochester, Cincinnati, Ohio; Springfield, Ill; Seattle, 1 NY; and Ann Arbor, Mich


We recommend that in patients with chronic venous disease, a complete history and detailed physical examination are complemented by duplex scanning of the deep and superficial veins. The test is safe, noninvasive, cost-effective, and reliable.

Clinical Parameters?

Clinical classification

Co: no visible or palpable signs of venous disease

C1: telangiectasies or reticular veins

C2: varicose veins

C3: edema

C4a: pigmentation or eczema

C4b: lipodermatosclerosis or atrophic blanche

C₅: healed venous ulcer C₆: active venous ulcer

S: symptomatic, including ache, pain, tightness, skin irritation, heaviness, and muscle cramps, and other complaints attributable to venous dysfunction

A: asymptomatic

Etiologic classification

Ec: congenital Ep: primary

Es: secondary (postthrombotic) En: no venous cause identified

Anatomic classification

As: superficial veins Ap: perforator veins Ad: deep veins

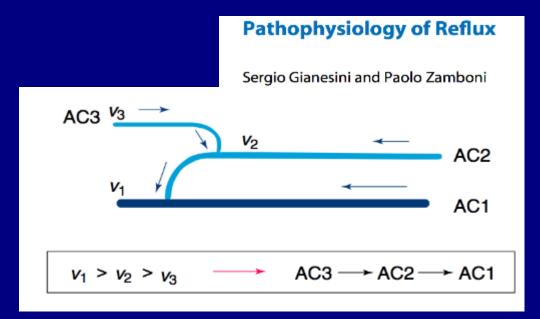
An: no venous location identified

Pathophysiologic classification

Basic CEAP Pr: reflux

Po: obstruction

Pr,o: reflux and obstruction


Pn: no venous pathophysiology identifiable

Static

- Not designed to respond to treatment
- Single measure of disease status
- Supplemented by VCSS for severity

- Haemodynamic disturbance
- Inability of venous conduits to maintain a normal pressure and flow to the heart
- Reflux and obstruction
- Reflux Time (RT) > 0.5 s

Anatomical Parameters?

The distribution and significance of varicosities in the saphenous trunks

Nicos Labranas	$Group\ A$	Group B	Group C	i. DC
Antonios P. Ga: CEAP c	ass 2 + 3	4 + 5 + 6	C_0P_N	is, BS,
Intomos I. du cere c		2	002 N	

Table II. Great saphenous vein diameters

			$Group\ A$			Group B			Group C	
Locatio	ns	Mean	95% CI	Range	Mean	95% CI	Range	Mean	95% CI	Range
SFJ Thigh Knee	Hig	her	CEAP C	lass as	socia	ated with	larger	vein	diamete	-14-7.8 -5.3 -4.6
Calf MM		3.4 2.8	3.3-3.5 2.71-2.89	0.7-22 2.2-7.2	4.2 3.3	4.02-4.38 3.15-3.45	0.7-26 2.6-8.4	2.8 2.6	2.2-3.4 2.3-2.9	0.9-4.2 1.9-3.7

Table III. Small saphenous vein diameters

	$Group\ A$			Group B			Group C		
Locations	Mean	95% CI	Range	Mean	95% CI	Range	Mean	95% CI	Range
TE SPJ Calf LM	2.2 4.3 3.1 1.9	2.14-2.26 4.14-4.46 2.98-3.22 1.85-1.95	0.8-7.6 2.4-21 0.7-23 0.8-4.2	2.9 5.1 3.5 2.2	3.05 4.82-5.38 3.35-3.65 2.11-2.29	0.7-9.2 2.6-24 0.8-25 0.7-4.4	1.9 3.2 2.3 1.8	1.6-2.2 2.7-3.7 1.9-2.7 1.65-1.95	0.7-3.2 1.8-4.6 0.7-3.5 1.4-3.1

Superficial venous insufficiency: Correlation of anatomic extent of reflux with clinical symptoms and signs

Nicos Labropoulos, BSc, Miguel Leon, MD, Andrew N. Nicolaides, MS, FRCS, Athanasios D. Giannoukas, MD, Nicos Volteas, MD, and Philip Chan, MChir, FRCS, London, United Kingdom

Conclusions: We conclude that ache, ankle edema, and skin changes in limbs with reflux confined to the superficial venous system are predominantly associated with reflux in the below-knee veins. Ulceration is found only when the whole of the LSV is involved (8%) or when reflux is

Ache

More than just reflux

ated to the

Incidence of skin changes went from 44% when the below-knee segment of the LSV was involved to 73% when reflux occurred throughout the LSV and SSV. Ulceration (14%) was found only in the latter situation.

CALCIIL OI ICIIUA.

From the American Venous Forum

Saphenous pulsation on duplex may be a marker of severe chronic superficial venous insufficiency

Christopher R. Lattimer, MBBS, FRCS, MS, FDIT, Mustapha Azzam, MD, DIC, MSc, PGD, Evi Kalodiki, MD, DIC, PhD, FRCS, Gregory C. Makris, MD, and George Geroulakos, MD, FRCS, DIC, PhD, London, United Kingdom

Fig 1. Duplex tracing of a typical saphenous pulse (SP) waveform. Each major tick represents 1 second. The background SP (4 asic, irregular, and of varying amplitude. spiration, is seen at the end of the trace.

ration in patients with severe nd significantly increases with , as it is easy to record, it could elevance of the SP in terms of

elevance of the SP in terms of severity. (J Vasc Surg 2012;56:

More than just reflux

Conclusions: The high prev superficial chronic venous i clinical severity and saphen supplement duplex evaluat

disease progression, recurrence after treatment, and as a hemodynamic marker of severity. (J Vasc Surg 2012;56: 1338-43.)

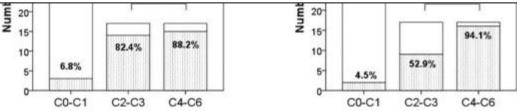
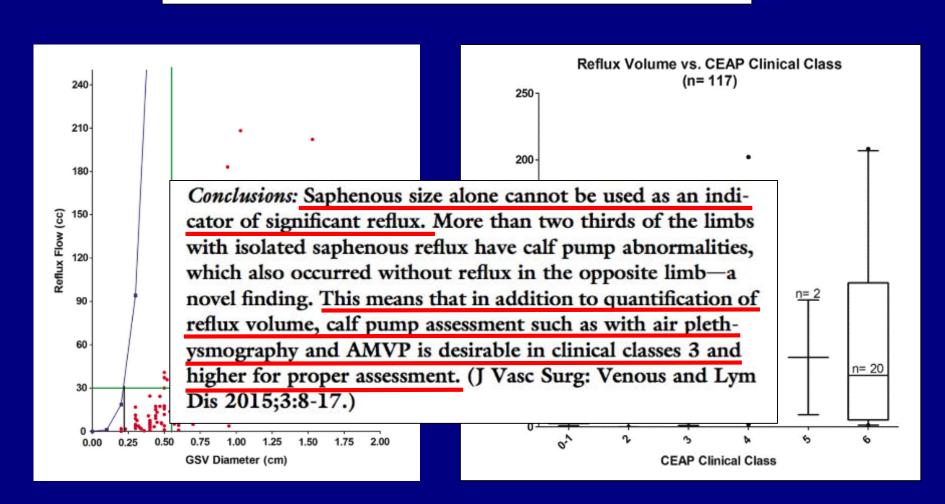


Fig 2. The prevalence of reflux (A) and saphenous pulse (SP) (B) across three levels of clinical severity. There was a significant stepwise increase in the prevalence of SP according to clinical severity with no detectable SP in approximately half of the subjects' legs with intermediate clinical severity (C_{2-3}).

A study to compare disease-specific quality of life with clinical anatomical and hemodynamic assessments in patients with varicose veins

Amanda C. Shepherd, MBBS, Manj S. Gohel, MD, FRCS, Chung S. Lim, MBBS, and Alun H. Davies, DM, FRCS, London, United Kingdom

Relationship between changes in AVVQ, SQOR-V, and VRTs. Changes in venous refill times at 6 weeks did not correspond to changes in AVVQ (Spearman coefficient -0.067; P = .587) or with SQOR-V scores (P = .437; Spearman coefficient -0.073) in patients with unilateral disease.


...no correlation in changes in VRT with either generic or disease-specific quality of life following intervention, suggesting that hemodynamic measurement is a poor outcome assessment tool in patients with uncomplicated venous disease

From the American Venous Forum

Journal of Vascular Surgery
Venous and Lymphatic Disorders

Quantifying saphenous reflux

Seshadri Raju, MD, FACS,* Mark Ward Jr, MS,* and Tamekia L. Jones, PhD, Jackson, Miss; and Memphis, Tenn

21 - ORIGINAL ARTICLE CLINICAL RESEARCH

Correlation between the hemodynamic gain obtaveins and chronic venous d

Correlação entre o ganho hemodinâmico obtido inferiores e a classificação da

Nei Rodrigues Alves Dezotti^I, Edwaldo Edner Joviliano^{II}, Takachi M

TABLE 1 - Mean, median and quartile (P25, P50 and P75%) values of the pre- and postoperative hemodynamic difference of the venous filling index (VFI) of groups C₂ + C₃, C₄ and C₅ + C₆

VFI Groups	N	1st Quartile(P25)	Median (P50)	3rd Quartile(P75)	Mean	Standard deviation
$C_2 + C_3$	38	0.07	0.72	2.36	1.34	1.80
C ₄	15	0.73	1.87	4.24	2.60	2.09
$C_5 + C_6$	10	1.21	2.75	6.33	3.29	3.13

TABLE 2 - Mean, median and quartile (P25, P50 and P75%) values of the pre- and postoperative hemodynamic difference of the ejection fraction (EF) of groups C₂ + C₃, C₄ and C₅ + C₆

VFI Groups	N	1st Quartile(P25)	Median (P50)	3rd Quartile(P75)	Mean	Standard deviation
$C_2 + C_3$	38	-24.83	-4.25	2.98	-9.84	22.05
C_4	15	-38.60	-18.30	-7.90	-22.91	17.35
$C_5 + C_6$	10	-29.03	-14.75	16.95	-9.71	30.63

TABLE 3 - Mean, median and quartile (P25, P50 and P75%) values of the pre- and postoperative hemodynamic difference of the residual volume fraction (RVF) of groups C₂+C₃, C₄ and C₅+C₆

VFI Groups	N	1st Quartile(P25)	Median (P50)	3rd Quartile(P75)	Mean	Standard deviation
$C_2 + C_3$	38	-8.10	4.25	19.10	9.14	25.84
C_4	15	-5.10	7.50	35.40	12.41	19.21
$C_5 + C_6$	10	-12.56	8.65	32.60	5.32	32.44

Original article

Reflux time estimation on air-plethysmography may stratify patients with early superficial venous insufficiency

C R Lattimer, E Kalodiki, M Azzam and G Geroulakos

Ealing Hospital & Imperial College, London SW7 2AZ, UK

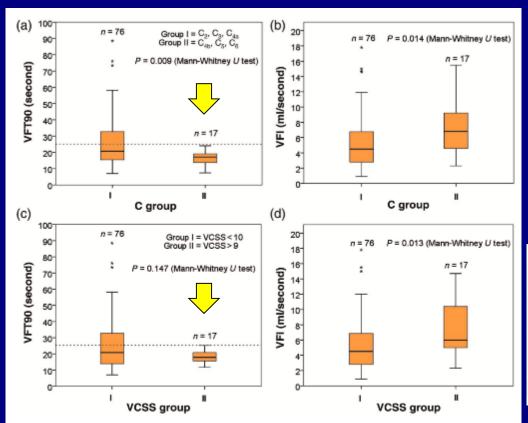


Figure 3 The VFT90 and the VFI benchmarked against two groups of severity of CVI. Although the median VFI is statistically higher in the more severe groups there was no discrimination (b, d). However, all 17 patients in the severe groups had a VFT90 < 25 seconds as demonstrated by the horizontal dashed line (a, c)

Table 2 Proposed stratification of patients with SVI based on clinical and haemodynamic assessments using CEAP and VFT90

Group	Description	Clinical	VFT90 (second)	Usage
S1	Mild	C _{2-4a}	>25	Cosmetic Risk for skin changes Ulcer prevention and treatment
S2	Moderate	C _{2-4a}	<25	
S3	Severe	C _{4b-6}	<25	

VFT90 – time to reach 90% of total venous volume

Conclusion

Patients with early clinical disease could be divided into two groups based on the severity of haemodynamic impairment. The use of the VFT90 in the stratification of patients for longitudinal natural history studies, treatment provision and response to treatment have yet to be determined.

Original article

Quantification of venous reflux parameters using duplex scanning and air plethysmography

T Yamaki, M Nozaki, H Sakurai, M Takeuchi, T Kono and K Soejima

Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, Tokyo, Japan

Group I (
$$C_{1-3}E_{P,S}$$
, $A_{S,D,P}$, $P_{R,O}$), $n = 341$ patients

Group II ($C_{4-6}E_{P,S}$, $A_{S,D,P}$, $P_{R,O}$), n = 233 patients

The PRV and PRF are better parameters than the RT for discrimination of clinical severity in both superficial and deep venous insufficiency, and should be used to quantify venous valvular insufficiency.

Table 5 Duplex and APG-derived parameters in patients with superficial insufficiency

RT (s) 4.68 ± 2.59 3.67 ± 1.58 <0 PRV (cm/s) 30.6 ± 19.8 50.4 ± 26.1 <0 PRF (mL/s) 42.6 ± 41.5 73.1 ± 74.3 <0 VV (mL) 88.1 ± 62.8 104.2 ± 36.9 <0 VFI (mL/s) 3.62 ± 2.11 6.09 ± 2.95 <0 EF (%) 50.3 ± 23.2 48.9 ± 17.3 0 RVF (%) 40.6 ± 25.0 46.1 ± 22.5 0 CSV 168 limbs 62 limbs Diameter (cm) 0.63 ± 0.15 0.72 ± 0.19 <0 RT (s) 5.37 ± 3.28 4.13 ± 1.68 0 PRV (cm/s) 48.2 ± 22.4 70.3 ± 26.8 <0 PRF (mL/s) 39.7 ± 33.9 50.3 ± 35.4 0 VV (mL) 90.0 ± 77.0 98.2 ± 34.4	
RT (s) 4.68 ± 2.59 3.67 ± 1.58 <0 PRV (cm/s) 30.6 ± 19.8 50.4 ± 26.1 <0 PRF (mL/s) 42.6 ± 41.5 73.1 ± 74.3 <0 VV (mL) 88.1 ± 62.8 104.2 ± 36.9 <0 VFI (mL/s) 3.62 ± 2.11 6.09 ± 2.95 <0 EF (%) 50.3 ± 23.2 48.9 ± 17.3 0 RVF (%) 40.6 ± 25.0 46.1 ± 22.5 0 CSV 168 limbs 62 limbs Diameter (cm) 0.63 ± 0.15 0.72 ± 0.19 <0 RT (s) 5.37 ± 3.28 4.13 ± 1.68 0 PRV (cm/s) 48.2 ± 22.4 70.3 ± 26.8 <0 PRF (mL/s) 39.7 ± 33.9 50.3 ± 35.4 0 VV (mL) 90.0 ± 77.0 98.2 ± 34.4	
PRV (cm/s) 30.6 ± 19.8 50.4 ± 26.1 <0 PRF (mL/s) 42.6 ± 41.5 73.1 ± 74.3 <0 VV (mL) 88.1 ± 62.8 104.2 ± 36.9 <0 VFI (mL/s) 3.62 ± 2.11 6.09 ± 2.95 <0 EF (%) 50.3 ± 23.2 48.9 ± 17.3 0 RVF (%) 40.6 ± 25.0 46.1 ± 22.5 0 GSV 168 limbs 62 limbs Diameter (cm) $0.63+0.15$ $0.72+0.19$ <0 RT (s) 5.37 ± 3.28 4.13 ± 1.68 0 PRV (cm/s) 48.2 ± 22.4 70.3 ± 26.8 <0 PRF (mL/s) 39.7 ± 33.9 50.3 ± 35.4 0 VV (mL) 90.0 ± 77.0 98.2 ± 34.4 0 RESIDENTIAL SETTING SETTIN	0.0001
PRF (mL/s)	0.0001
VV (mL) 88.1 ± 62.8 104.2 ± 36.9 < 0	0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0001
EF (%) 50.3±23.2 48.9±17.3 C RVF (%) 40.6±25.0 46.1±22.5 C GSV 168 limbs 62 limbs Diameter (cm) 0.63+0.15 0.72+0.19 <0 RT (s) 5.37±3.28 4.13±1.68 C PRV (cm/s) 48.2±22.4 70.3±26.8 <0 PRF (mL/s) 39.7±33.9 50.3±35.4 C VV (mL) 90.0±77.0 98.2±34.4 C	0.0001
RVF (%) 40.6±25.0 46.1±22.5 C GSV 168 limbs 62 limbs Diameter (cm) 0.63±0.15 0.72±0.19 <0	0.0001
GSV 168 limbs 62 limbs Diameter (cm) 0.63+0.15 0.72+0.19 <0).887
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.018
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
RT (s) 5.37 ± 3.28 4.13 ± 1.68 CO PRV (cm/s) 48.2 ± 22.4 70.3 ± 26.8 < O PRF (mL/s) 39.7 ± 33.9 50.3 ± 35.4 CO VV (mL) 90.0 ± 77.0 98.2 ± 34.4 CO	0.0001
PRF (mL/s) 39.7±33.9 50.3±35.4 VV (mL) 90.0±77.0 98.2±34.4 0	0.015
VV (mL) 90.0 ± 77.0 98.2 ± 34.4 0	0.0001
	0.002
VEL / 1 / 1 000 000 000 000 000	0.002
VFI (mL/s) 3.31 ± 2.28 6.09 ± 3.20 <0	0.0001
EF (%) 48.8 ± 28.8 48.5 ± 15.6).497
RVF (%) 39.8 ± 24.7 45.5 ± 22.9	0.042
SPJ 39 limbs 17 limbs	
).267
RT (s) 5.37 ± 2.81 5.36 ± 3.30 C	0.653
PRV (cm/s) 32.1±11.1 42.8±15.6	0.022
).357
VV (mL) 95.4 ± 37.3 101.9 ± 28.0 0).831
VFI (mL/s) 3.25 ± 1.30 4.26 ± 1.43	0.028
EF (%) 47.1 ± 21.0 42.8 ± 17.4	868.0
RVF (%) 34.0 ± 24.4 43.2 ± 19.2).113

Role of haemodynamic parameters

Guideline No.	3. Plethysmography	GRADE of recommendation	Level of evidence
	f patients with varicose veins and	1. Strong	A. High quality
practice gu	chronic venous diseases: Clinical idelines of the Society for Vascular d the American Venous Forum	2. Weak	B. Moderate quality C. Low or very low quality
3.1	We suggest that venous plethysmography be used selectively for the noninvasive evaluation of the venous system in patients with simple varicose veins (CEAP class C ₂).	2	C ,
3.2	We recommend that venous plethysmography be used for the noninva evaluation of the venous system in patients with advanced chronic venous disease if duplex scanning does not provide definitive information on pathophysiology (CEAP class C ₃ -C ₆).	asive 1	В

Management of Chronic Venous Disease

Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS)

Recommendation 14	Class	Level	References
Plethysmography may be considered for the assessment of quantitative parameters related to venous function.	IIb	С	85, 180, 181

Thank you

