

Home made or standard fenestration?

Is there a difference?

E.Ducasse MD PhD FEVBS
CHU bordeaux

Disclosure Speaker name: .E Ducasse.. I have the following potential conflicts of interest to report: Consulting Cook, Gore, Medtronic **Employment in industry** Shareholder in a healthcare company Owner of a healthcare company Other(s) I do not have any potential conflict of interest

We already know the early and mid-term results of STfenestrations

Ann Vasc Surg. 2013 Nov;27(8):1190-200. doi: 10.1016/j.avsg.2013.06.003. Epub 2013 Aug 22.

Fenestrated endovascular repair for pararenal abdominal aortic aneurysms: a systematic review and metaanalysis.

Di X1, Ye W, Liu CW, Jiang J, Han W, Liu B.

- Meta-analysis: 12 studies / 776 cases between 2006-2011
- 30-day mortality : 2.52% (95% CI: 1.55-4.08)
- Technical success: 92.8% (95% CI: 87.5-96.0)
- 1-year target vessel patency : 94.5% (95% CI: 92.1-96.2)
- Postoperative reintervention rate: 17.6% (95% CI: 12.0-25.1)
- Postoperative permanent dialysis rate: 2.6% (95% CI: 1.5-4.4)

F-EVAR is a favorable option in high-risk patients with good early and mid-term outcomes

As well as the long-term results

J Vasc Surg. 2015 Feb;61(2):355-64. doi: 10.1016/j.jvs.2014.09.068.

Twelve-year results of fenestrated endografts for juxtarenal and group IV thoracoabdominal aneurysms.

Mastracci TM¹, Eagleton MJ², Kuramochi Y², Bathurst S², Wolski K².

- Long term survival : 20% at 8 years
 - Negatively associated with increasing age, congestive heart failure, cancer, and previous aneurysm repair
- Aortic-related mortality: 2%
- Spinal cord ischemia: 1.2%
- Less complex designs = increased risk of type I EL over time
 - 10.4% for renal fenestrations only vs. 1.9% for others, p < 0.01

F-EVAR is safe and effective in long-term FU Mortality is largely not aortic-related

What about HM-fenestrations?

2006 : first description in a series of 3 patients

J Vasc Interv Radiol. 2006 Dec;17(12):1935-42.

Clinical experience with a customized fenestrated endograft for juxtarenal abdominal aortic aneurysm repair.

Uflacker R¹, Robison JD, Schonholz C, Ivancev K.

■ Technical success: 100%

■ FU 4-14 months:

- No procedure-related complications
- No EL

AT THE MOMENT VERY FEW STUDIES ARE AVAILABLE ON HM-FENESTRATIONS Perspect Vasc Surg Endovasc Ther. 2009 Sep;21(3):157-67. doi: 10.1177/1531003509351594. Epub 2009 Dec 3.

Modified fenestrated stent grafts: device design, modifications, implantation, and current applications.

Oderich GS1, Ricotta JJ 2nd.

- 30 patients from 2007-2009 vs.16 debranching + EVAR
- 85 fenestrations: 50 renals, 33 SMAs, 2 hypogastric
- Mean time for device modification : 45 min
- 2.8 reconstructed vessels/patient in both groups
- Technical success: 98%
- **30 day mortality : 3.3%** (1 patient) vs. 19% (NS)
- Complications: 37% vs. 73% (p<0.05)
- 1-year :
 - primary target vessel patency : 97% vs. 98%
 - freedom from EL: 88% vs. 74%
 - survival : 72% vs 71%

J Vasc Surg. 2013 Aug;58(2):311-7. doi: 10.1016/j.jvs.2013.01.029. Epub 2013 May 3.

Early report from an investigator-initiated investigational device exemption clinical trial on physician-modified endovascular grafts.

Starnes BW1, Tatum B.

- 26 patients from 2011-2012
 - Mean aneurysm diameter : 62.5 mm
- 63 fenestrations: 48 renals, 15 SMAs (left unstented)
- Mean device modification time: 59.7 min
- Technical success: 100%
- 30-day mortality : 3.8%
 - 1 respiratory failure, 1 congestive heart failure
- MAEs : 11.5%
- EL :
 - Freedom from type I or III ELs: 87.5%
 - 15.4% of type II ELs

Eur J Vasc Endovasc Surg. 2015 Nov;50(5):583-92. doi: 10.1016/j.ejvs.2015.07.002. Epub 2015 Aug 7.

Early Results of Physician Modified Fenestrated Stent Grafts for the Treatment of Thoraco-abdominal Aortic Aneurysms.

Cochennec F1, Kobeiter H2, Gohel M3, Leopardi M4, Raux M4, Majewski M4, Desgranges P4, Allaire E4, Becquemin JP4.

- 11 TAAA (mean age 73) from January 2012-June 2014
 - 8 ASA 3, 3 ASA 4
 - Mean diameter : 73 mm
- Median number of fenestration : 3
- Median device modification time : 2 hours with diameter reducing ties
- In hospital mortality: 9% (1 patient: colic ischemia)
- Complications: 36%
 - 1 paraparesis with complete resolution after spinal fluid drainage, 1 pneumonia, 1 acute prostatitis, 1 retroperitoneal hematoma at the site of a right iliac conduit deemed necessary because of hostile iliac access treated endovascularly
- Reinterventions: 45%
 - 3 type III ELs (additional covered stent deployment on target vessels), 1 covered stent for retroperitoneal hematoma, 1 type Ia EL (proximal stent component)
- Median FU: 6 months:
 - No additional complication or EL

J Endovasc Ther. 2015 Oct 23. pii: 1526602815611887. [Epub ahead of print]

Systematic Review of Off-the-Shelf or Physician-Modified Fenestrated and Branched Endografts.

Georgiadis GS¹, van Herwaarden JA², Antoniou GA³, Hazenberg CE², Giannoukas AD⁴, Lazarides MK⁵, Moll FL².

- Meta-analysis from January 2001 through March 2015
- 15 articles on HM-fenestrations vs. 8 on off-the-shelf devices / 308 patients (mean age 72.93)
 - 1/3 operated on an emergency basis
 - Mean aneurysm diameter: 75.9 mm vs. 68.1 mm
- 458 vs. 478 target vessels
- MAEs: 12.8% (95% CI: 8.6-18.7) vs. 7.4% (95% CI: 3.7-14)
- Technical success: 91.4% (95% CI: 86.2-94.9) vs. 95% (95% CI: 89.1-98.0)
- Mortality: 3.2% (1.1% aneurysm related) vs. 0%
- Overall target vessel patency: 96.7% vs. 97.9%

Major conclusions on HM-fenestrations drawned from those limited series

- Perform similarly to commercially manufactured grafts in terms of :
 - Technical success
 - Mortality/Morbidity
 - ELs
 - and target vessel's patency at short-term follow-up
- Safe and effective in both the elective and acute settings for the treatment of complex aortic aneurysms in high-risk patients
- Reintervention is frequent = need for diligent FU
- Patients surviving the initial hospitalization of acute aortic disease can anticipate good long-term survival

Legal issues

J Vasc Surg. 2013 Mar;57(3):829-31. doi: 10.1016/j.jvs.2012.11.043.

A surgeon's perspective regarding the regulatory, compliance, and legal issues involved with physician-modified devices.

Starnes BW1.

- Off-label use of medical devices occurs on a daily basis
- When performed by physicians it is both legal and unregulated
- Reimbursement might be denied citing that the device modifications are « investigational »
- Since the device has been modified after manufacturing process and used outside the IFUs, the manufacturer is exempt from any product liability claim

J Vasc Surg. 2013 Mar;57(3):832-3. doi: 10.1016/j.jvs.2012.12.026.

Advisory statement on clinical use of modified aortic endografts from the Society for Vascular Surgery®.

White RA¹.

- Patient's consent necessary
- If serial use is planned: IRB and IDE approvals required

- 125 high risk-patients from January 2010-2015 :
 - 20 treated by HM-fenestration
 - vs. **105** by ST-fenestration
- Groups comparable except for :

• Male : ST > HM

• BMI : ST > HM

• History of prior aortic surgery

: HM> ST

Variables	$HM\ group$ $n=20$	$ST\ group$ $n = 105$	p
Male	17 (85)	101 (96)	0.048
Age (years)	74.7 ± 6.9	71.3 ± 8.5	0.092
Coronary heart disease	5 (25)	41 (39)	0.24
Hypertension	15 (75)	85 (81)	0.55
Dyslipidemia	9 (45)	63 (60)	0.22
Diabetes	3 (15)	17 (16)	0.90
BMI	$24,4 \pm 3,1$	26.3 ± 4.5	0.008
CVD	0 (0)	10 (10)	0.15
PAD	2 (10)	9 (9)	0.84
Prior aortic surgery	4 (20)	7 (7)	0.056
Hostile abdomen	6 (30)	20 (19)	0.27
Active smoking	8 (40)	25 (24)	0.13
COPD	7 (35)	24 (23)	0.25
ASA classification	-	-	0.21
1	1 (5)	5 (5)	-
2	8 (40)	47 (45)	-
3	8 (40)	50 (48)	-
4	2(10)	3 (3)	-
5	1 (5)	0 (0)	-

Device sizing


Graft is unsheathed on a back side table under sterile conditions

Location of the fenestrations is pre-marked between struts with sterile

marker (5 mm diameter)


Hole created in the fabric with cuttering pen

Snare used as a radio-opacifier and sewn with 5/0 prolène suture

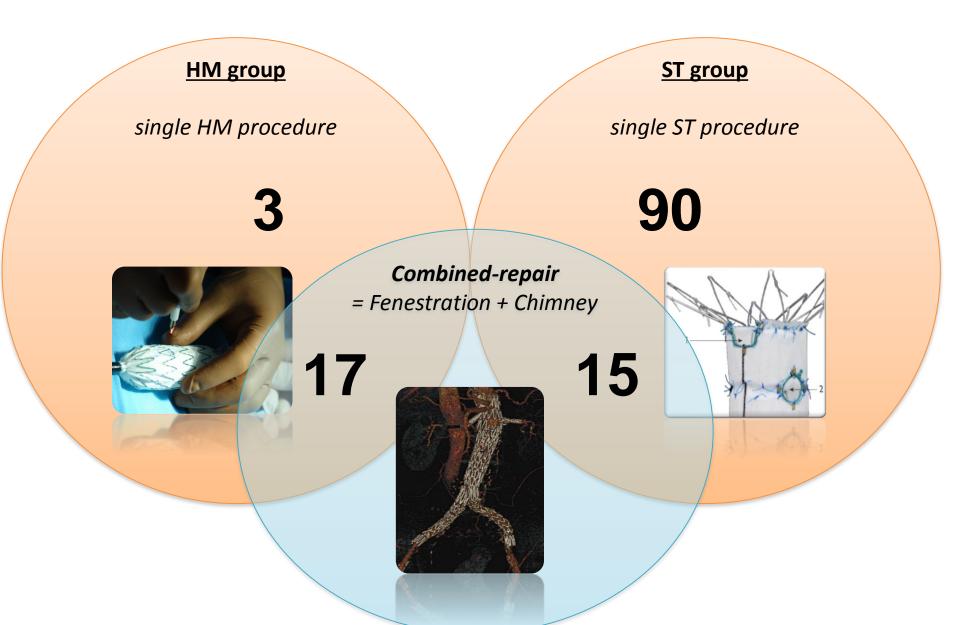
Diameter reducing ties are positioned

Device is resheathed

Total preparation time 50 to 80 min:

Coincides with the preparation of the patient from the anesthesiology team and while the graft is prepared by the primary senior surgeon, the assistant surgeon can work in parallel on surgical exposure

Anatomical caracteristics and implanted devices


- Groups comparable except :
 - Aortic neck and graft D :
 ST > HM
 - Total nb of reconstructed vessels/patient: ST> HM
- 23 HM-fenestrations :
 - 21 renals, 1 CT, 1 SMA
- 229 ST-fenestrations :
 - 194 renals, 27 SMAs, 8 CTs

Variables	HM group	ST group	<u>p</u>
Aneurysm D (mm)	63.0 ± 10.8	58.6 ± 9.9	0.078
Aortic neck D (mm)	24.4 ± 2.4	26.2 ± 2.9	0.013
Graft D (mm)	27.8 ± 2.2	30.7 ± 3.6	0.001
Oversizing (%)	12 ± 4	14 ± 5	0.12
Endografts	-	-	-
Medtronic [®]	4 (20)	0 (0)	-
Cook®	16 (80)	81 (77)	-
Vascutek®	0 (0)	24 (23)	-
Target vessel D (mm)	6.1 ± 0.8	6.0 ± 0.9	0.85
Target vessel stent D (mm)	6.7 ± 0.6	6.6 ± 0.7	0.54
Nb of reconstructed RA	21	194	_
Total nb of reconstructed vessels/patient	2.5 ± 0.7	3.0 ± 0.6	0.002

Target vessels stents:

- Advanta V12[®] = 20 HM / 226 ST
- Lifestream® = 1 HM / 3 ST
- Bentley® = 2 HM

Methods

reconstruction

Indications for HM:

• Symptomatic aneurysm: 30%

D AAA > 70mm : 4 patients

Unfavorable anatomy :

- Prior aortic surgery with anastomotic pseudoaneurysm: 4 patients
- Hostile iliac access ≤ 7mm : 4 patients
- < 15 mm between SMA/highest renal : 2 patients

Variables	HM group	ST group	p.
Emergency	6 (30)	0 (0)	<0.0001
Cuff	2(0.1)	3 (2.9)	0.14
ABI	17 (85.0)	101 (96.2)	0.048
AUI + bypass*	1 (5.0)	1 (0.9)	0.19
Hypogastric embolization	2(0.1)	10 (9.5)	0.95
Combined repair	17 (85)	15 (14.3)	< 0.0001
Fluoroscopy time (min)	56.1 ± 19.2	62.6 ± 31.4	0.47
Procedure time (min)	196.3 ± 73.6	182.4 ± 87.5	0.51
Dosimetry (cGy/cm ²)	13519±5793	18940±14032	0.18
Contrast (mL)	93.6 ± 22.0	130.6 ± 56.7	0.006

^{*} femoro-femoral

Significant differences :

 Contrast: HM < ST but less reconstructed vessels/patient

• Combined-repair : HM > ST

Mean hospital stay: NS

Renal function

- Only significant difference :
 - Pre-operative renal failure : HM > ST
- Only one shift towards hemodialysis:
 ST group
- (renal stents occlusions)

No significant difference in terms of post-operative

Acute renal failure or Chronic renal insufficiency

Variables	HM group	ST group	p
GFR			
J-1	71.8 ± 35.5	83.4 ± 24.7	0.081
10	76.7 ± 43.8	76.1 ± 20.0	0.46
J1	79.9 ± 48.0	74.5 ± 26.3	0.61
J2	74.2 ± 49.4	75.8 ± 30.3	0.57
J5	74.8 ± 43.2	76.1 ± 27.7	0.23
J-1 vs. J0	p = 0.71	p = 0.035	-
J-1 vs. J5	p = 0.82	p = 0.065	-
GFR < 60			
J-1	9 (45.0)	14 (13.3)	0.001
J0	9 (45.0)	31 (29.5)	0.18
J1	9 (45.0)	36 (34.3)	0.36
J2	11 (55.0)	35 (33.3)	0.07
J5	10 (50.0)	31 (29.5)	0.08
Pre-operative HD	0 (0)	1(1)	0.68
Post-operative HF	1 (5.0)	2(1.9)	0.42
Kidney infarction	6 (30.0)	27 (25.7)	0.69
AKI			
Risk	5 (25.0)	16 (15.2)	0.29
Injury	1 (5.0)	6 (5.7)	0.91
Failure	0(0.0)	2(1.9)	0.55
CKD			
CKD improved	4 (20.0)	11 (10.5)	0.23
CKD stable	10 (50.0)	65 (61.9)	0.32
CKD decline x1	6 (30.0)	22 (20.9)	0.38
CKD decline x2	0(0.0)	7 (6.7)	0.24

Early post-operative results

- Cannulation failure: 1 HM vs. 2 ST
 - Technical success:90.5 vs. 99.0%
- 30-days mortality: 15 vs. 2.9%
 - HM: 1 external iliac rupture only surgical conversion
- Target vessel injury : HM > ST

BUT emergency procedures with hostile iliac access

Variables	HM group	ST group	p
Intraoperative events			
Cannulation failure	1 (4.8)	2(1.0)	0.17
Target Vessel injury	1 (4.8)	0 (0,0)	0.002
Early results (≤ 30 days)			
30 days mortality	3 (15.0)	3 (2.9)	0.021
Multi-organ failure	0 (0.0)	1 (0.9)	0.68
Bowel ischemia	2 (10.0)	2(1.9)	0.062
Gastric hemorrhage	0 (0.0)	1 (0.9)	0.68
Respiratory complication	(0,0)	3 (2.9)	0.45
Rhabdomyolysis	0 (0.0)	1 (0.9)	0.68
Target vessel occlusion	1* (4.8)	3 (1.5)	0.30
Target vessel dissection	1 (4.8)	1 (0.5)	0.056
Access vessel dissection	0 (0.0)	2(1.9)	0.42
Access vessel rupture	1 (5.0)	0 (0.0)	0.023
Access site false aneurysm	0 (0.0)	1 (0.9)	0.68
Access site hematoma	1 (4.8)	2(1.9)	0.42
Lower limb ischemia	0 (0.0)	3 (2.9)	0.45
Myocardial infarction	0 (0.0)	2(1.9)	0.68
Regressive SCI	0.0)	1 (0.5)	0.68

SCI, spinal chord ischemia

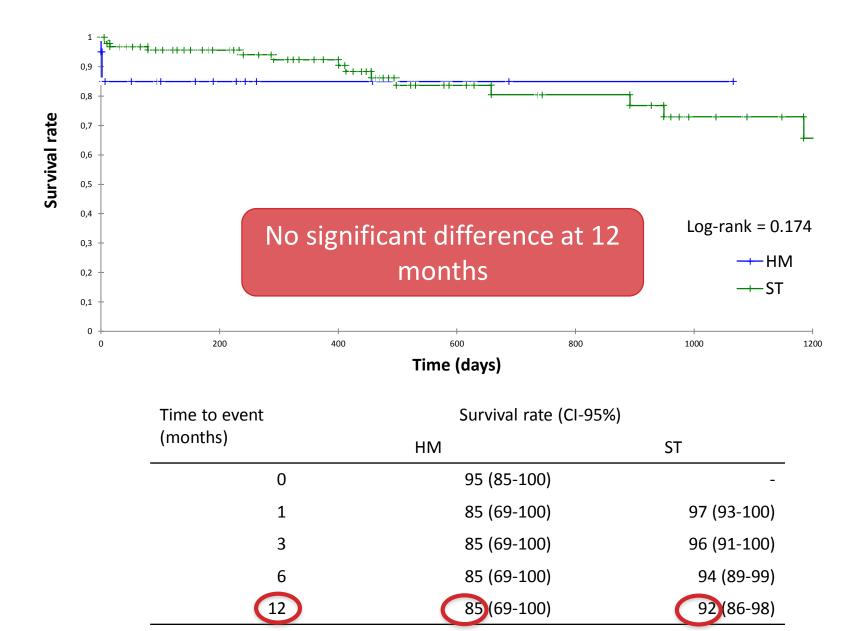
^{*} Patient had a combined procedure and it was a chimney occlusion on the right renal artery and not a fenestration

Reinterventions

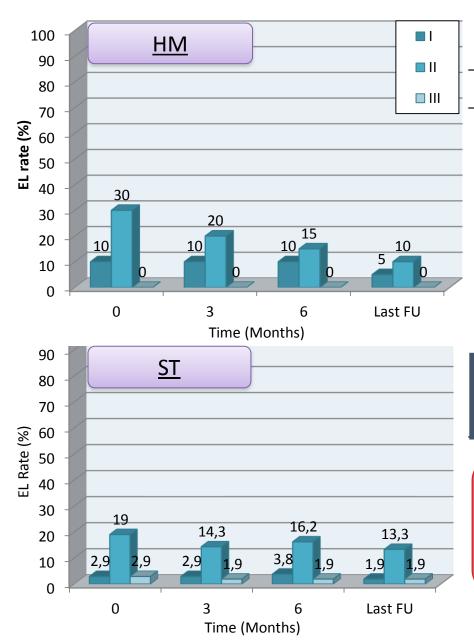
• HM :

- 1 renal stent occlusion
- 2 type la ELs
- BUT due to the chimneys

• ST :

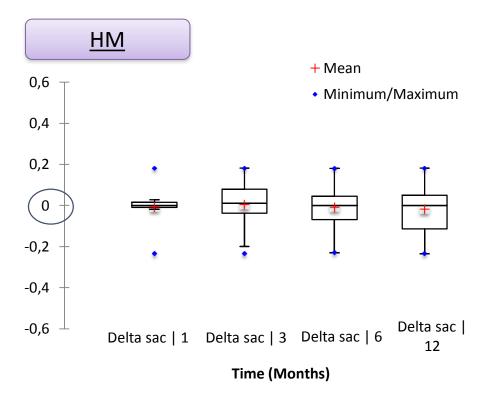

 1 type I EL = proximal cuff addition

Variables	HM group	ST group	p .
Target vessel occlusion	1* (4.8)	0 (0.0)	0.002
Limb occlusion/stenosis	1 (5.0)	1 (0.95)	0.19
Limb extension	(0.0)	4 (3.8)	0.38
Access complication	1 (5.0)	3 (2.9)	0.63
Type I EL	2** (10.0)	1 (0.95)	0.016
Type II EL	0 (0.0)	3 (2.9)	0.45
Type III EL	0 (0.0)	2(1.9)	0.55
Chronic mesenteric ischemia	0.0)	1 (0.95)	0.68
Acute mesenteric ischemia	2 (10.0)	2(1.9)	0.062

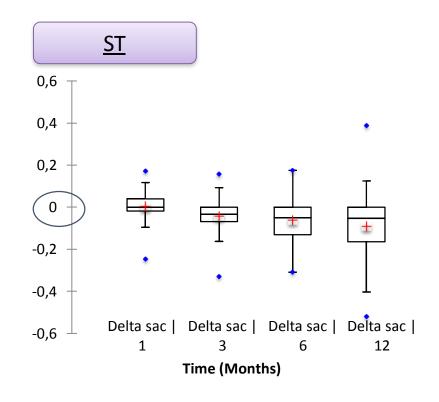

^{*} Patient had a combined procedure and it was a chimney occlusion on the right renal artery and not a fenestration

^{**} Patients had a combined procedure the type I EL was due to the open chimney in the left renal artery for the first patient and the open chimney in the SMA in the second that we chose to convert into covered chimneys

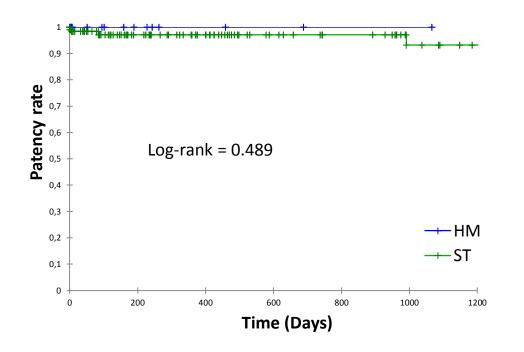
Survival curve


ELs

Variables	HM group	ST group	p.
Post-operative	-	-	-
Type I EL	2 (10.0)	3 (2.9)	0.14
Type II EL	6 (30.0)	20 (19.0)	0.27
Type III EL	0.0)	3 (2.9)	0.45
3 months follow-up		-	
Type I EL	2 (10.0)	3 (2.9)	0.14
Type II EL	4 (20.0)	15 (14.3)	0.52
Type III EL	0.0)	2 (1.9)	0.68
6 months follow-up	-	-	-
Type I EL	2 (10.0)	4 (3.8)	0.24
Type II EL	3 (15.0)	17 (16.2)	0.90
Type III EL	0.0)	2 (1.9)	0.68
Last follow-up (days)	179 ± 269	448 ± 433	
Type I EL	1 (5.0)	2(1.9)	0.42
Type II EL	2 (10.0)	14 (13.3)	0.69
Type III EL	0.0)	2 (1.9)	0.68


Type I, II or III ELs: No significant difference at 12 months

Evolution of the Aneurysmal sac



At 12 months:

- p = 0.052
- Mean:
 - HM = -1.8% (-23 18%)
 - ST = -9% (-52 39%)

Primary patency of the target renal arteries

- ST group = 189/194
- 1 impossible to cannulate
- 2 early thrombosis
- 2 thrombosis at 3 months FU:
 - 1 in a patient who had already lost her left kidney (LRA impossible to cannulate) → only shift towards dialysis

Time to event	Patency rate (CI-95%)		
(months)	НМ	ST	
0	100 (85-100)	99 (98-100)	
1	100 (85-100)	98 (97-100)	
3	100 (85-100)	97 (95-100)	
6	100 (85-100)	97 (95-100)	
12	100 (85-100)	97 (95-100)	

No significant difference at 12 months

In our experience:

- Early results : HM-fenestrations < ST
 - 30-days mortality, target vessel injury and liac rupture

BUT emergency procedures with hostile iliac access

 At 6 and 12 months: NO SIGNIFICANT DIFFERENCE in terms of patency, renal function, ELs or survival

- HM-fenestrations:
 - Perform similarly to ST-fenestrations
 - technical success, target vessel's patency, renal function, ELs and survival at shortterm follow-up
 - Are safe and effective
 - In elective and acute settings
 - For complex aortic aneurysms in high-risk patients
- Current design of off-the-shelf devices is theoretically applicable in 50-80% of anatomical configurations:
 - some patients will still require an alternative