EVAS and chEVAS will replace EVAR and FEVAR

Francesco Torella

Liverpool Vascular & Endovascular Service

Disclosure of interest

Professional fees Educational grants Research grant

Levels of evidence

- I Evidence obtained from at least one properly designed RCT
- **II-1** Evidence obtained from well-designed controlled trials without randomization
- **II-2** Evidence obtained from well-designed cohort or case-control analytic studies
- **II-3** Evidence obtained from multiple time series designs
- **III** Opinions of respected authorities

There is no comparative evidence for EVAR vs EVAS or FEVAR vs chEVAS

Will EVAS and chEVAS replace EVAR and FEVAR?

Place your €100 bets

ODDS 10:1

No comparative data

No EVAS long term data

No chEVAS long term data

(Some) FEVAR long term data

Will EVAS and chEVAS replace EVAR and FEVAR?

Place your €100 bets

ODDS 100:1

No comparative data

No EVAS long term data

No chEVAS long term data

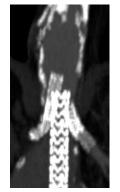
(Some) FEVAR long term data

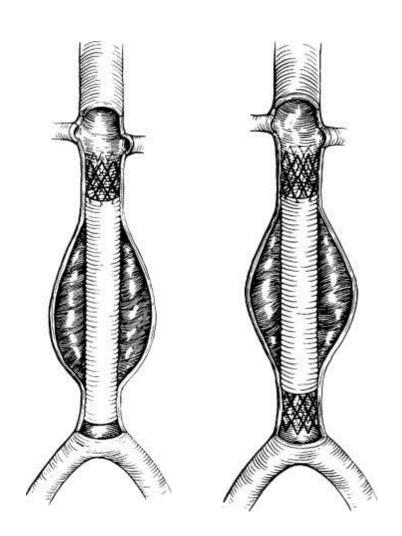
My argument

EVAR is an imperfect technique, which has reached its full potential

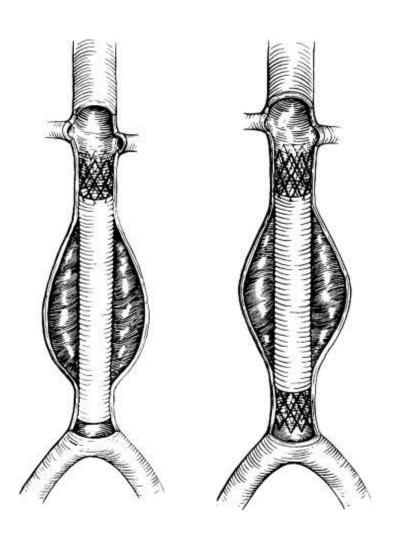
FEVAR is a complex, flawed technique, which benefits few patients

EVAS/chEVAS is the only endovascular alternative to EVAR/FEVAR


Results of EVAS/chEVAS suggest you should place your bet NOW!



VS



Does anybody recognise these pictures?

Does anybody recognise these pictures?

Same principle as current EVAR

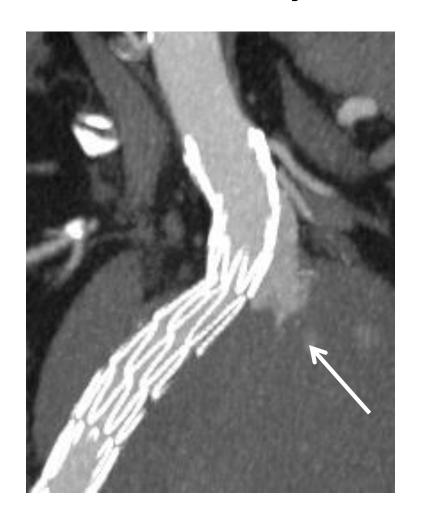
Same implantation technique

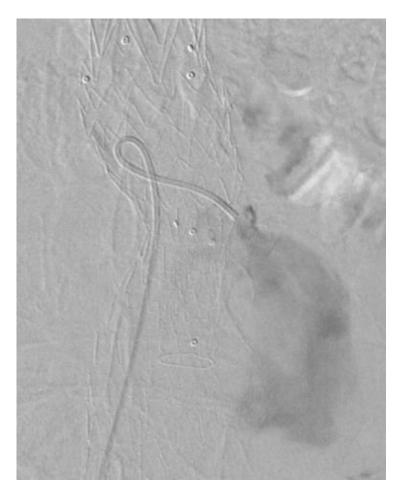
Marginal gains over time stent design technique imaging patient selection

The concept has not changed

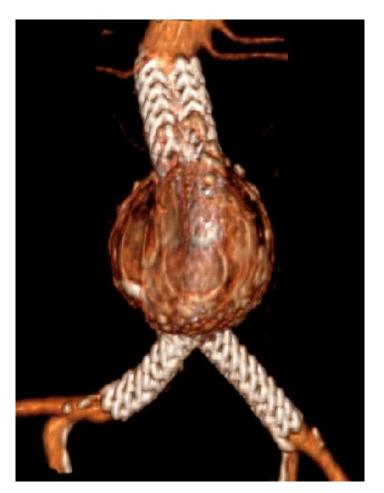
Problems with EVAR

Increased life expectancy¹


Higher long term mortality than open repair²

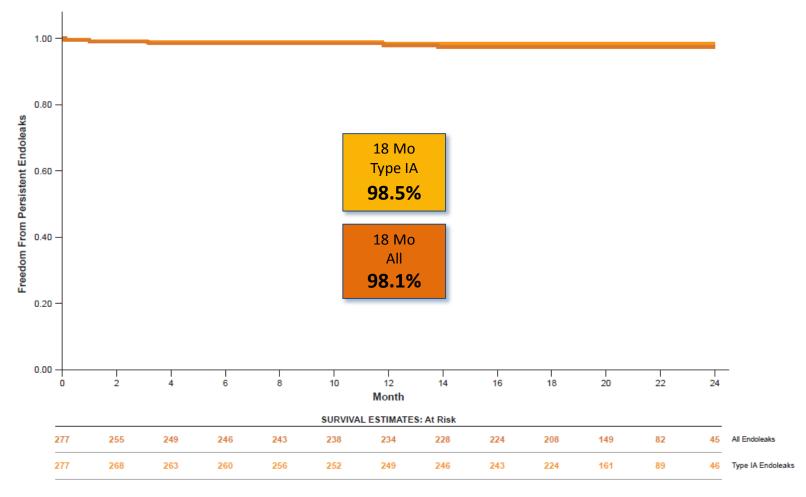

Late failure due to concept, not technique or materials

Why does EVAR fail?

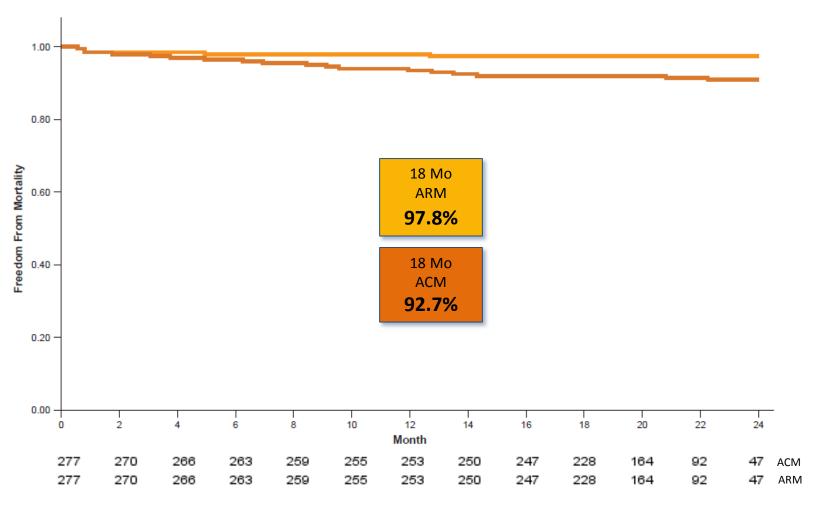


EVAS

No space for endoleaks


No modularity

The EVAS Forward registry


Freedom from endoleak

The EVAS Forward registry

Survival

Problems with FEVAR

Limited applicability (high turn-down rate)


Complex intervention¹

High 30 day mortality for zone 6 repairs¹⁻²

Cost

Temporal constraints

No conclusive advantage vs open repair³

FEVAR/BEVAR in Liverpool

Proximal landing zone - last 50 cases

N	FEVAR/BEVAR	Configuration	Zone
11	BEVAR	4B/F	<6
19	FEVAR	3F 1S	6
17	FEVAR	4F	6
1	FEVAR	3F	6
1	FEVAR	2F 1S	6
1	FEVAR	1F1S	6

Zone 9	Zone 8	Zone 7	Zone 6
CA SMA LRA Zone 9	SMA RRA Zone 8	Zone 7	Zone 6 CA SMA RRA LRA

Configuration of Stent-Graft and Target Vessels ¹

Target Vessels	Configuration	n
CA+SMA+ Rt and Lt renals	4F	8
(1S 3F	53
_ \	2S 2F	2
CA+SMA+ renal	1S 2F	1_
SMA+Rt and Lt renals	3F	48
	1S 2F	114
	2S 1F	6
Rt and Lt renals	1S 1F	13
	2F	44
One renal	1S	4
	1F	12

S indicates scallop; F, fenestration; CA, celiac artery; SMA, superior mesenteric artery; Rt, right; and Lt, left.

30-d mortality of "zone 6" FEVAR

BSET/Globalstar ¹	9.4%
Patel et al. ²	24%

¹BSET & Globalstar, Circulation 2012

²Patel et al., JVS 2015

ChEVAS154 AAAs in ASCEND registry

30 day all cause mortality

2.8%

30 day mortality for zone 6-7 chEVAS

0%

1y freedom from aneurysm related mortality

94.3%

chEVAS

154 AAAs in ASCEND registry

All Endoleak

	Total	Type Ia	Type Ib	Type II	Type III
Early (154)	1.9% (3)	0.6% (1)	1.3% (2)	0%	0%
Late (136)	2.9% (4)	2.9% (4)	0%	0%	0%

Type 1a Endoleak

	Total	Single	Double	Triple- Quadruple
Early	0.6%	0%	1.9%	0%
(154)	(1/154)	(0/62)	(1/54)	(0/38)
Late	2.9%	5.2%	0%	2.9%
(136)	(4/136)	(3/58)	(0/51)	(1/34)

ChEVAS154 AAAs in ASCEND registry

Persistent endoleaks

	Total	Type Ia	Type Ib	Type II	Type III
Early (154)	0%	0%	0%	0%	0%
Late (136)	0%	0%	0%	0%	0%

EVAS and chEVAS will replace EVAR and FEVAR

Place your bets now

