

# Debate - There is no U-turn for the endovascular treatments

On behalf of USZ vascular specialists
Felice Pecoraro, MD



### Disclosure of Interest

Speaker name: Felice Pecoraro

I do not have any potential conflict of interest



#### 1988-First T-EVAR case

Н. Л. Володось, Н. П. Карпович, В. Е. Шеханин, В. И. Троян, Л. Ф. Яко-ченко, Л. С. Керемст, А. С. Неомета, В. И. Кулеба, А. И. Саньков, Г. И. Гавриков

СЛУЧАЯ ДИСТАНЦИОННОГО ЧРЕЗБЕДРЕННОГО ЭНДОПРОТЕЗИРОВАНИЯ ГРУДНОЯ АОРТЫ САМОФИКСИРУЮЩИМСЯ СИНТЕТИЧЕСКИМ ПРОТЕЗОМ ПРИ ТРАВМАТИЧЕСКОЯ АНЕВРИЗМЕ



Рис. 1. Аортограмма больного В.



Ркс. 3. Рентгенограмма грудной клетки боль-ного В. через 2 мес после операции. фиксирующие экоменты находятся на том же уров-не.

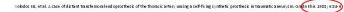



Рис. 2. Аортограмма больного Б. после размещения эпропротова.

Възли системний прети на уроне VIII—XI грумпах подголожен тисле фиксирующих положения по уроне VIII—XI грумпах подголожения подголожения подголожения по уроне VIII—XI грумпах подголожения подголожения

### N. Volodos







### 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases

Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult

The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC)

The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC)

and abdominal aorta of the adult

TEVAR should be considered in patients who have a descending TAA with a maximal diameter ≥55 mm. When surgery is the only option, it should be considered in patients with a maximal diameter ≥60 mm. Lower thresholds can be considered in patients with Marfan syndrome.

### Recommendations for (contained) rupture the thoracic aortic aneurysm

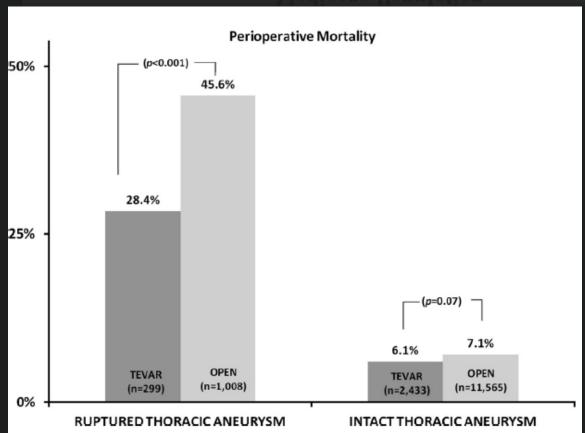
| Recommendations                                                                                                              | Classa | Level <sup>b</sup> |
|------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|
| In patients with suspected rupture of<br>the TAA, emergency CT angiography<br>for diagnosis confirmation is<br>recommended.  | _      | U                  |
| In patients with acute contained rupture of TAA, urgent repair is recommended.                                               | -      | U                  |
| If the anatomy is favourable and the expertise available, endovascular repair (TEVAR) should be preferred over open surgery. | 1      | U                  |

\*Class of recommendation.

<sup>b</sup>Level of evidence.

CT = computed tomography; TAA = thoracic aortic aneurysm; TEVAR = thoracic endovascular aortic repair.

#### Cardiovascular Surgery

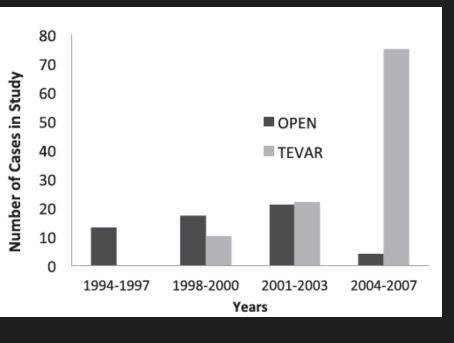


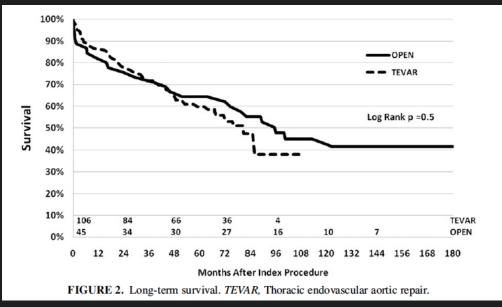

#### Survival After Open Versus Endovascular Thoracic Aortic Aneurysm Repair in an Observational Study of the Medicare Population

Philip P. Goodney, MD, MS; Lori Travis, MS; F. Lee Lucas, PhD; Mark F. Fillinger, MD; David C. Goodman, MD, MS; Jack L. Cronenwett, MD; David H. Stone, MD

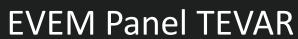
Philip P. Goodney, MD, MS; Lori Travis, MS; F. Lee Lucas, PhD; Mark F. Fillinger, MD; David C. Goodman, MD, MS; Jack L. Cronenwett, MD; David H. Stone, MD

#### Medicare Population



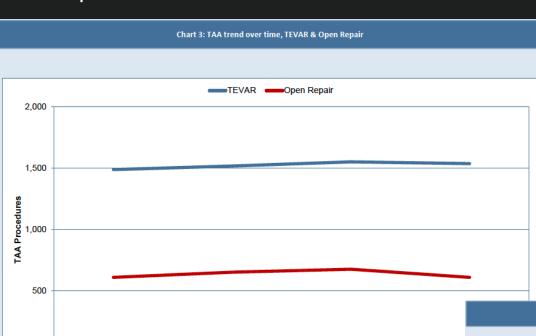


## Long-term comparison of thoracic endovascular aortic repair (TEVAR) to open surgery for the treatment of thoracic aortic aneurysms




Nimesh D. Desai, MD, PhD, Kristen Burtch, BS, William Moser, MS, Pat Moeller, BS, Wilson Y. Szeto, MD, Alberto Pochettino, MD, Edward Y. Woo, MD, Ronald M. Fairman, MD, and Joseph E. Bavaria, MD

### Nimesh D. Desai, MD, PhD, Kristen Burtch, BS, William Moser, MS, Pat Moeller, BS, Wilson Y. Szeto, MD, Alberto Pochettino, MD, Edward Y. Woo, MD, Ronald M. Fairman, MD, and Joseph E. Bavaria, MD






4<sup>th</sup> quarter 2014 – 3<sup>rd</sup> Quarter 2015



0

Q4 2014



Q1 2015

Q2 2015

|             | Endovascular<br>Procedures | Surgical<br>Procedures |
|-------------|----------------------------|------------------------|
| AAA         | 6,895                      | 3,279                  |
| TAA         | 1,538                      | 611                    |
| Aorto-Iliac | 27,453                     | 4,163                  |
| Fem-Pop     | 51,061                     | 8,048                  |
| Overall     | 86,947                     | 16,101                 |

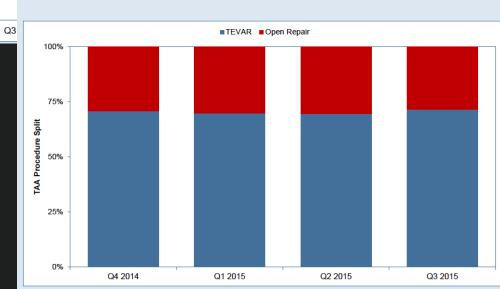
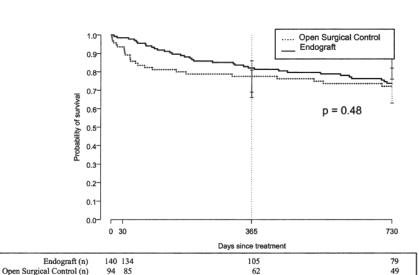



Chart 4: TEVAR vs Open Repair Split


# Endovascular stent grafting versus open surgical repair of descending thoracic aortic aneurysms in low-risk patients: A multicenter comparative trial

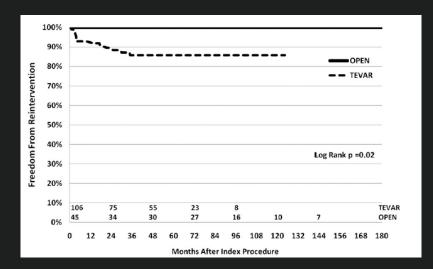


Joseph E. Bavaria, MD,<sup>a</sup> Jehangir J. Appoo, MD,<sup>a,b</sup> Michel S. Makaroun, MD,<sup>c</sup> Joel Verter, PhD,<sup>d</sup> Zi-Fan Yu, ScD,<sup>d</sup> and R. Scott Mitchell, MD,<sup>e</sup> for the Gore TAG Investigators\*

Joseph E. Bavaria, MD,<sup>a</sup> Jehangir J. Appoo, MD,<sup>a,b</sup> Michel S. Makaroun, MD,<sup>c</sup> Joel Verter, PhD,<sup>d</sup> Zi-Fan Yu, ScD,<sup>d</sup> and R. Scott Mitchell, MD,<sup>e</sup> for the Gore TAG Investigators\*

|                                                               | Endovascular group | Open surgical group | <i>P</i> value |
|---------------------------------------------------------------|--------------------|---------------------|----------------|
| Mortality: 30 d or in hospital                                | 2.1% (n = 3)       | 11.7% (n = 11)      | .004           |
| Respiratory failure*                                          | 4%                 | 20%                 | <.001          |
| Postoperative MI                                              | 0%                 | 1%                  | .40            |
| Renal failuret                                                | 1%                 | 13%                 | .01            |
| Wound infection/dehiscence                                    | 4%                 | 11%                 | .07            |
| GI complication (ileus, bowel ischemia, or bowel obstruction) | 2%                 | 6%                  | .16            |
| Peripheral vascular complications‡                            | 14%                | 4%                  | .015           |
| Neurologic complications                                      |                    |                     |                |
| CVA                                                           | 4% (n = 5)         | 4% (n = 4)          | 1.00           |
| Paraplegia/paraparesis                                        | 3% (n = 4)         | 14% (n = 13)        | .003           |
| Mean ICU length of stay (d)                                   | $2.6 \pm 14.6$     | 5.2 ± 7.2           | <.001          |
| Mean length of hospital stay (d)                              | 7.4 ± 17.7         | 14.4 ± 12.8         | <.001          |





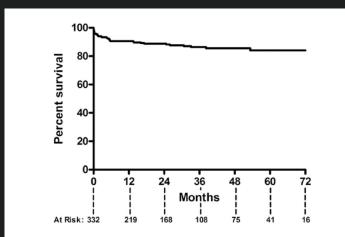

### Long-term comparison of thoracic endovascular aortic repair (TEVAR) to open surgery for the treatment of thoracic aortic aneurysms

Nimesh D. Desai, MD, PhD, Kristen Burtch, BS, William Moser, MS, Pat Moeller, BS, Wilson Y. Szeto, MD, Alberto Pochettino, MD, Edward Y. Woo, MD, Ronald M. Fairman, MD, and Joseph E. Bavaria, MD

#### Joseph E. Bavaria, MD

Wilson Y. Szeto, MD, Alberto Pochettino, MD, Edward Y. Woo, MD, Ronald M. Fairman, MD, an




### Results of Thoracic Endovascular Aortic Repair 6 Years After United States Food and Drug Administration Approval

Asad A. Shah, MD, Michael E. Barfield, MD, Nicholas D. Andersen, MD, Judson B. Williams, MD, Julie A. Shah, RN, BSN, Jennifer M. Hanna, MD, MBA, Richard L. McCann, MD, and G. Chad Hughes, MD

Department of Surgery, Duke University Medical Center, Durham, North Carolina

Chad Hughes, MD
Department of Surgery, Duke University Medical Center, Durham, North Carolina

MD, Julie A. Shah, HN, BSN, Jennffer M. Hanna, MD, MBA, Hichard L. McCann, MD, and G.



**Fig 1.** Kaplan-Meier curve demonstrates an 84% freedom from reintervention at 6 years after thoracic endovascular aortic repair.

### Superior nationwide outcomes of endovascular versus open repair for isolated descending thoracic aortic aneurysm in 11,669 patients



Raja R. Gopaldas, MD, <sup>a,b</sup> Joseph Huh, MD, <sup>a,b</sup> Tam K. Dao, PhD, <sup>c</sup> Scott A. LeMaire, MD, <sup>a,b</sup> Danny Chu, MD, <sup>a,d</sup> Faisal G. Bakaeen, MD, <sup>a,d</sup> and Joseph S. Coselli, MD<sup>a,b</sup>

| TABLE 1. Patient demographics and baseline characteristics |  |
|------------------------------------------------------------|--|
|------------------------------------------------------------|--|

| Characteristic     | OAR $(n = 9106)$ | TEVAR $(n = 2563)$ | $\chi^2$ or t | P value | Effect size* |
|--------------------|------------------|--------------------|---------------|---------|--------------|
| Age (y)            | $60.2 \pm 14.2$  | $69.5 \pm 12.7$    | 31.888        | < .001  | 0.67         |
| Elective admission | 7660 (84.1%)     | 2158 (84.2%)       | 0.009         | .9      | NA           |

| TABLE 2. | Patient | comor | bidities | ì |
|----------|---------|-------|----------|---|
|----------|---------|-------|----------|---|

| Comorbidity                      | OAR $(n = 9106)$ | TEVAR $(n = 2563)$ | χ²      | P value | $\boldsymbol{\varphi}$ |
|----------------------------------|------------------|--------------------|---------|---------|------------------------|
| Chronic PVD                      | 368 (4.0%)       | 564 (22.0%)        | 878.398 | < .001  | 0.274                  |
| Previous MI                      | 10 (0.1%)        | 10 (0.4%)          | 9.189   | .005    | 0.028                  |
| Previous CHF                     | 1441 (15.8%)     | 264 (10.3%)        | 48.896  | < .001  | 0.065                  |
| Previous cerebrovascular disease | 278 (3.1%)       | 205 (8.0%)         | 123.315 | < .001  | 0.103                  |
| Chronic pulmonary disease        | 1306 (14.4%)     | 881 (34.4%)        | 527.618 | < .001  | 0.213                  |
| Rheumatic disease                | 110 (1.2%)       | 42 (1.6%)          | 2.888   | .09     | 0.016                  |
| Peptic ulcer disease             | 25 (0.3%)        | 24 (0.9%)          | 20.957  | < .001  | 0.042                  |
| Mild liver disease               | 40 (0.4%)        | 5 (0.2%)           | 3.104   | .1      | 0.016                  |
| Diabetes mellitus                | 854 (9.4%)       | 352 (13.7%)        | 40.943  | < .001  | 0.059                  |
| Diabetic complications           | 63 (0.7%)        | 25 (1.0%)          | 2.149   | .2      | 0.014                  |
| Hemiplegia or paraplegia         | 61 (0.7%)        | 26 (1.0%)          | 3.209   | .09     | 0.017                  |
| Chronic kidney disease           | 388 (4.3%)       | 313 (12.2%)        | 224.128 | < .001  | 0.139                  |
| HIV                              | 10 (0.1%)        | 0                  | 2.817   | .1      | 0.016                  |
| Cancer                           | 120 (1.3%)       | 36 (1.4%)          | 0.116   | .7      | 0.003                  |
| Metastatic cancer                | 18 (0.2%)        | 5 (0.2%)           | 0.001   | 1.0     | 0.001                  |

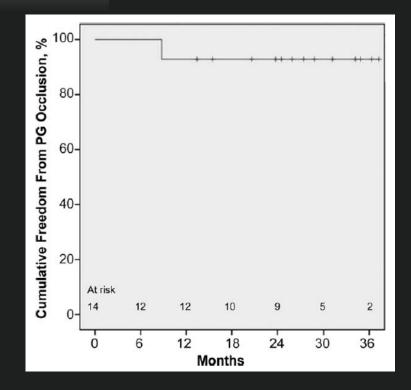
I-MEET NEXT GENERATION

TABLE 3. Unadjusted outcomes of TEVAR versus OAR

|                             | OAR             | TEVAR           | P      | Effect  |
|-----------------------------|-----------------|-----------------|--------|---------|
| Outcome                     | (n = 9106)      | (n = 2563)      | value  | size    |
| Died during hospitalization | 209 (2.3%)      | 59 (2.3%)       | 1.0    | 0*      |
| Complications per patient   | $0.51 \pm 0.79$ | $0.33 \pm 0.67$ | < .001 | 0.7†    |
| Any complication            | 3428 (37.6%)    | 588 (22.9%)     | < .001 | 0.128*  |
| Length of stay (d)          | $8.77 \pm 7.9$  | $7.6 \pm 11.1$  | < .001 | 0.13†   |
| Routine discharge           | 4126 (45.3%)    | 1671 (65.2%)    | < .001 | 0.188*  |
| Intraoperative/procedure-   | 2066 (22.7%)    | 294 (11.5%)     | < .001 | 0.116*  |
| related complications       |                 |                 |        |         |
| Deep venous thrombosis      | 38 (0.4%)       | 50 (2.0%)       | < .001 | 0.073*  |
| Infections                  | 488 (5.4%)      | 140 (5.5%)      | .8     | 0.002*  |
| Neurologic complications    | 217 (2.4%)      | 64 (2.5%)       | .7     | 0.003*  |
| Pulmonary embolism          | 32 (0.4%)       | 6 (0.2%)        | .4     | -0.009* |
| Respiratory complications   | 951 (10.4%)     | 110 (4.3%)      | < .001 | -0.089* |
| Renal complications         | 535 (5.9%)      | 157 (6.1%)      | .6     | 0.004*  |








Prof G. Melissano

## NO DOUBT TEVAR IS THE FIRST CHOICE



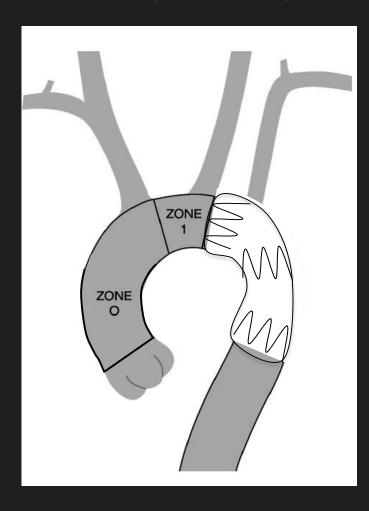
### Limitation - Branch Vessels



#### horacic Endovascular Aortic Repair

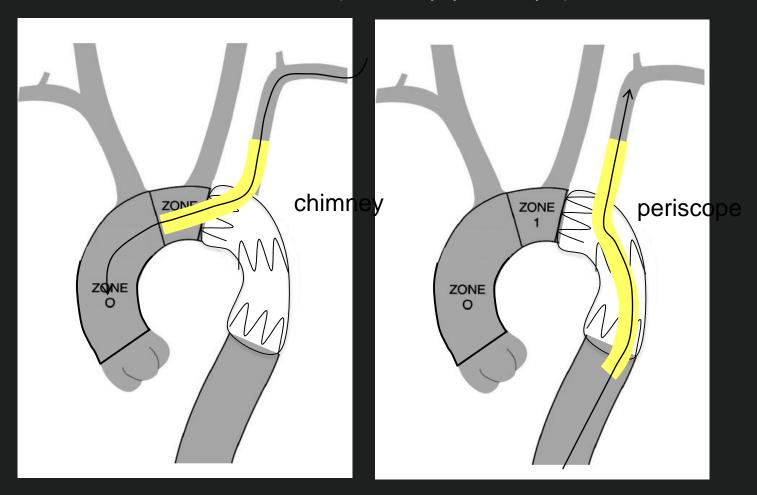
Mario Lachat, MD'; Dieter Mayer, MD'; Thomas Pfammatter, MD²; Frank J. Criado, MD³; Zoran Rancic, MD, PhD¹; Thomas Larzon, MD, PhD⁴; Frank J. Veith, MD¹,⁵; and Felice Pecoraro, MD¹,6

Mario Lachat, MD<sup>1</sup>; Dieter Mayer, MD<sup>1</sup>; Thomas Pfammatter, MD<sup>2</sup>; Frank J. Criado, MD<sup>3</sup>; Zoran Rancic, MD, PhD<sup>1</sup>; Thomas Larzon, MD, PhD<sup>4</sup>; Frank J. Veith, MD<sup>1,5</sup>; and Felice Pecoraro, MD<sup>1,6</sup>


Periscope Endograft Technique to Revascularize the Left Subclavian Artery During Thoracic Endovascular Aortic Repair

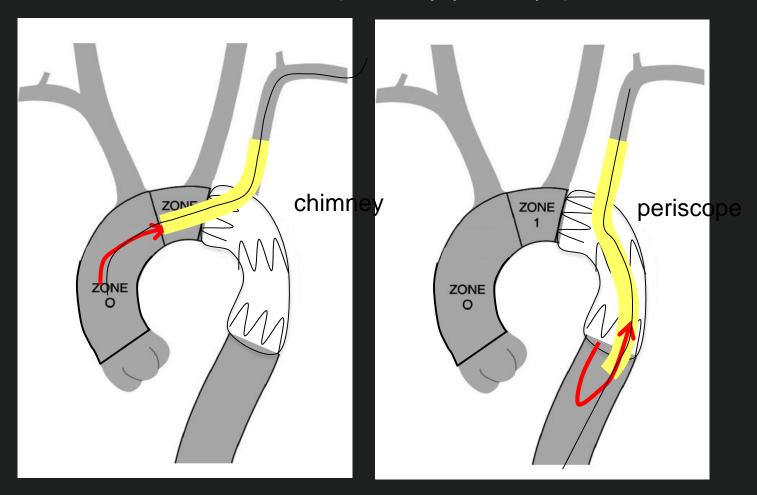
**◆**CLINICAL INVESTIGATION



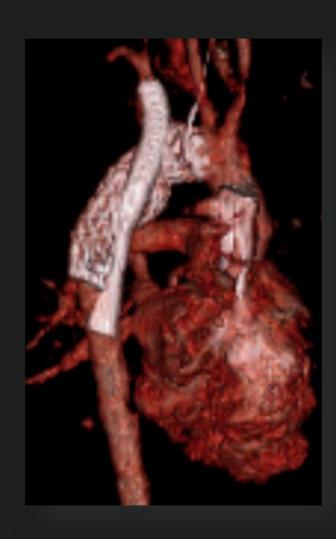



### Aortic stentgraft landing in zone 2

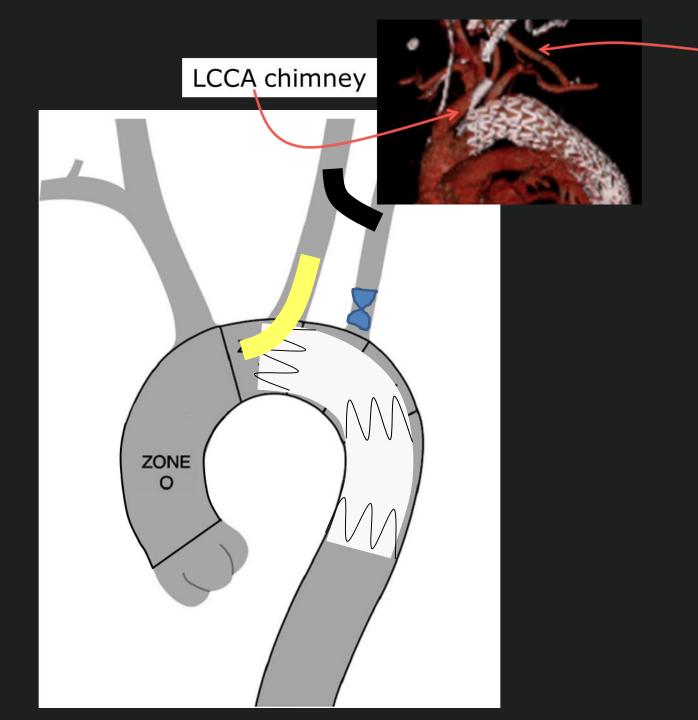





### Parallel Graft (chimney, periscope)



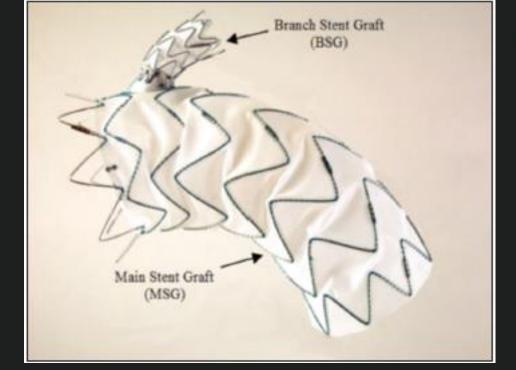




### Parallel Graft (chimney, periscope)



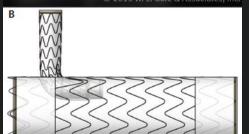


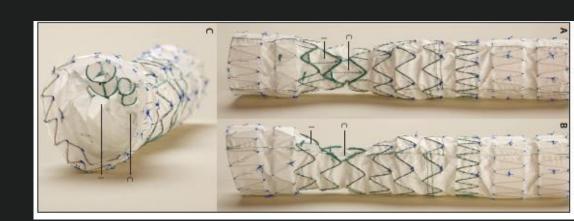




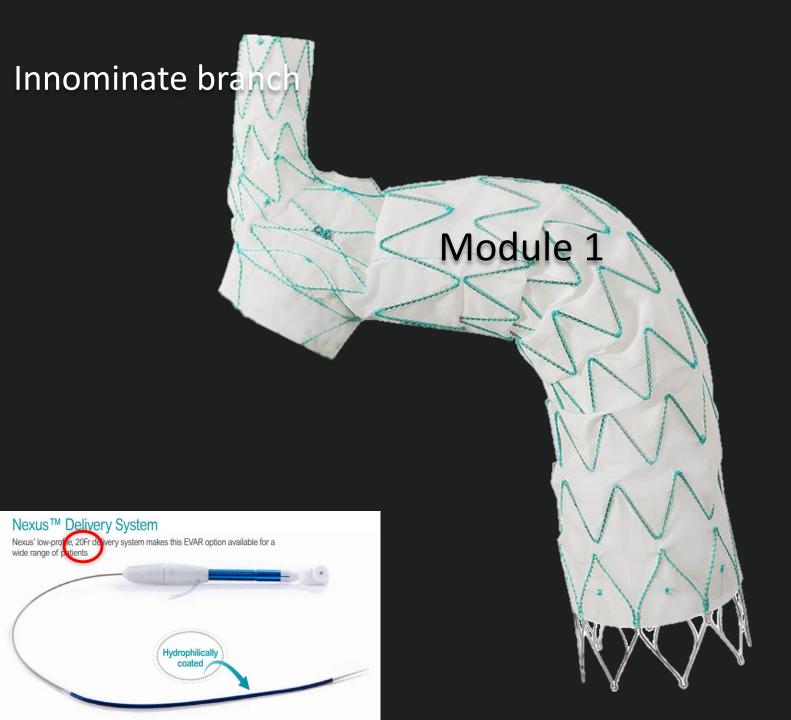




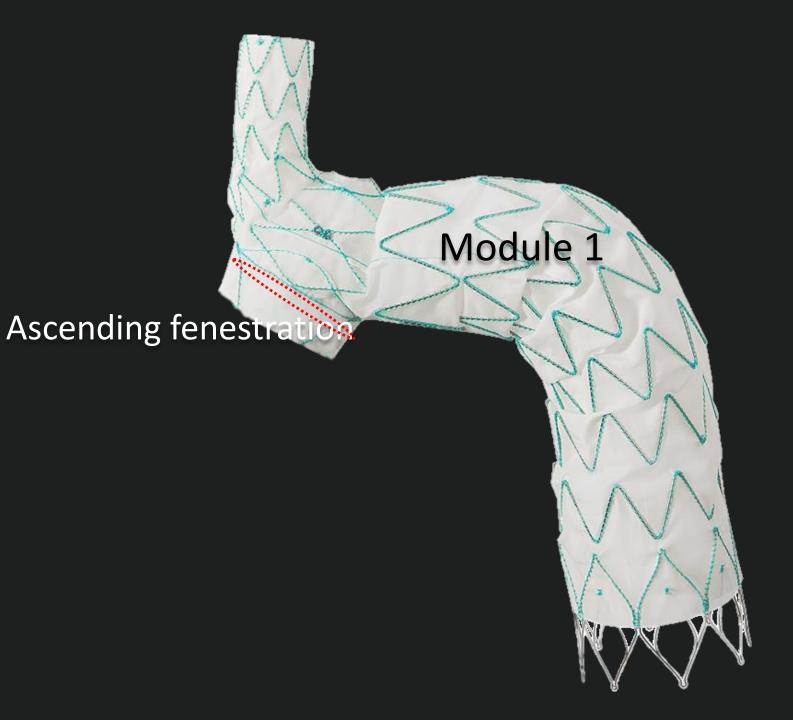



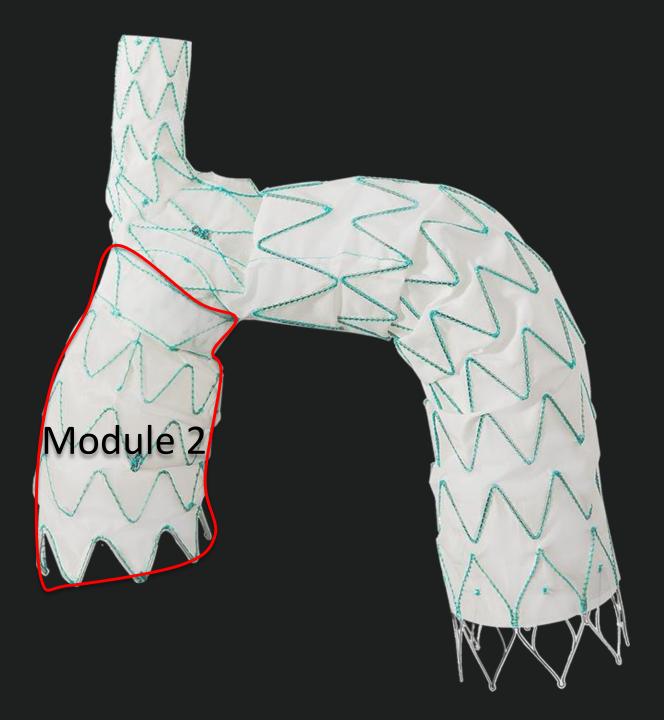




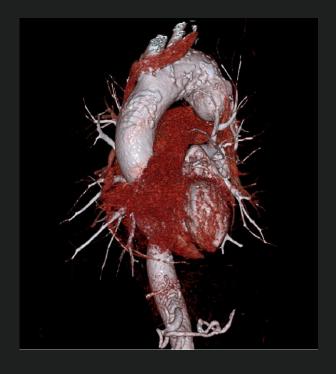








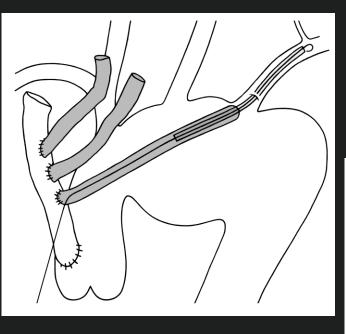



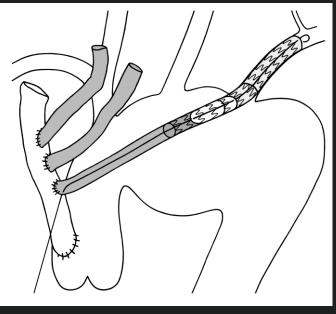


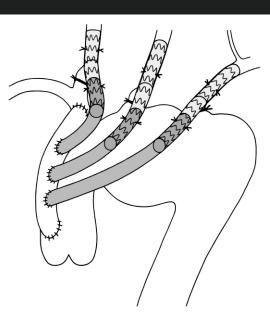




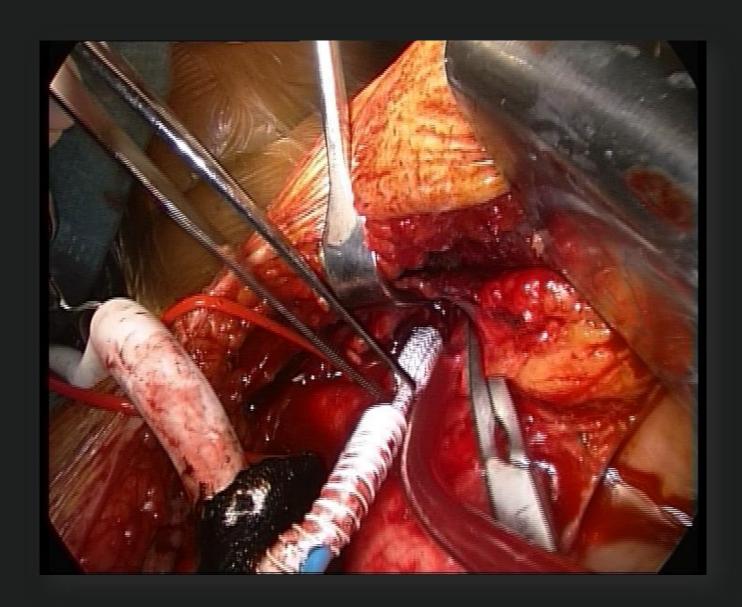


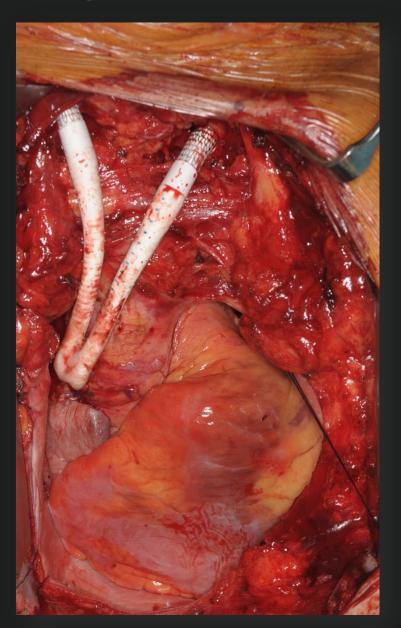





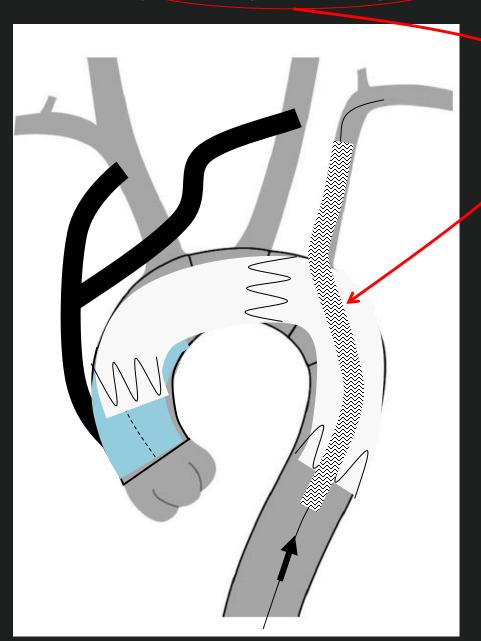


## Debranching + TEVAR










## Gore Hybridgraft (Carotid arteries)



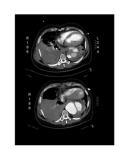


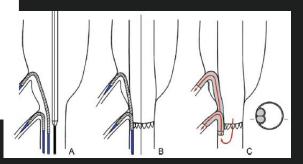
### EVAR with periscope endograft on LSA



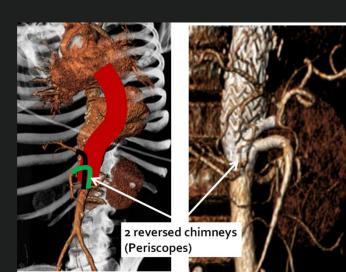






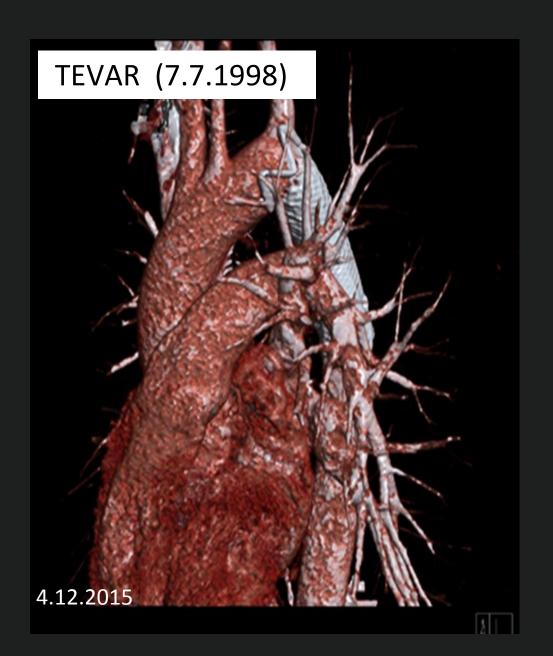


# Periscope graft to extend distal landing zone in ruptured thoracoabdominal aneurysms with short distal necks

Zoran Rancic, MD, PhD, Thomas Pfammatter, MD, Mario Lachat, MD, Lukas Hechelhammer, MD, Thomas Frauenfelder, MD, Frank J. Veith, MD, Hank J. Criado, MD, and Dieter Mayer, MD, Zurich, Switzerland; New York, NY; and Baltimore, Md


Endovascular aneurysm repair (EVAR) of ruptured thoracoabdominal aortic aneurysms may be compromised or even impossible due to short proximal and/or distal necks or landing zones, respectively. Supra-aortic branches may limit the proximal anchorage and visceral or renal arteries the distal anchorage of endografts. While solutions have been proposed to overcome the problem of a short proximal neck, no technique has been described that solves the problem of a short distal neck. We present the "periscope technique," which allows extension of the distal landing zone and complete endovascular treatment of ruptured thoracoabdominal aneurysms with short distal necks using devices already stocked in most centers performing EVAR procedures. (J Vasc Surg 2010;51:1293-6.)











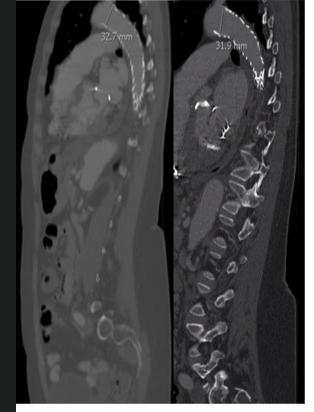

### TEVAR LT results: 18 years TAI





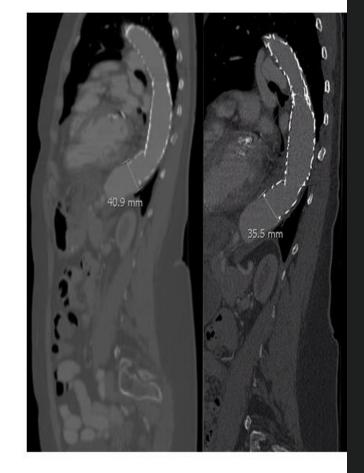


### Connective Tissue diseases


- Surgery should be preferred over TEVAR
- TEVAR could be employed as a bridge to surgical therapy in emergent setting for initial stabilization.



### Sister in law


- 42 yo, Marfan
- 4.2.2010: «sudden death»
  - Root and ascending replacement & mitral valve reapir
- 2.3.2010: AICD
- 10.6.2010: Acute B type Dissection
- 23.6.2010: TEVAR
- 2.3.2011: redo TEVAR

FUP 30 months post EVAR



30 months FUP





30 months FUP



### Costs

J Vasc Surg. 2015 March; 61(3): 596-603. doi:10.1016/j.jvs.2014.09.009.

#### Cost Analysis of Endovascular versus Open Repair in the Treatment of Thoracic Aortic Aneurysms

Jacob R. Gillen, MD, Basil W. Schaheen, MD, Kenan W. Yount, MD, MBA, Kenneth J. Cherry, MD, John A. Kern, MD, Irving L. Kron, MD, Gilbert R. Upchurch Jr, MD, and Christine L. Lau, MD, MBA

Department of Surgery, Division of Thoracic and Cardiovascular Surgery, University of Virginia Health System, Charlottesville, VA, USA

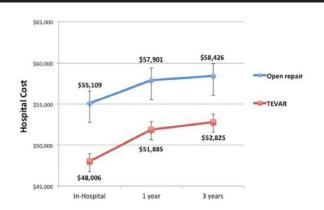



Figure 1.

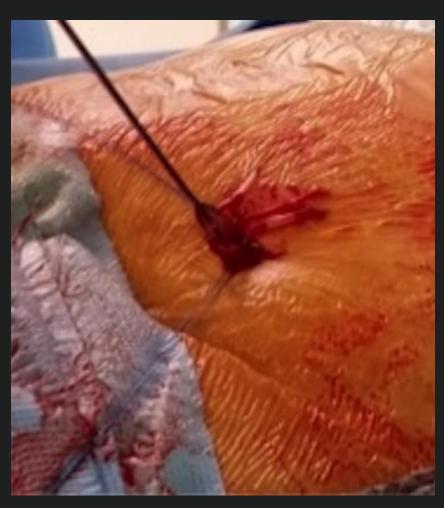
Cost Forecast of TEVAR vs. Open TAA Repair over time. Each forecast reflects the mean surrounded by error bars reflecting the interquartile range.

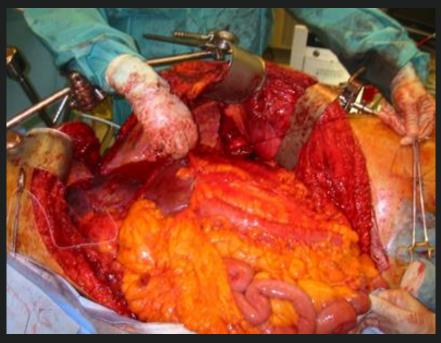
Eur J Vasc Endovasc Surg 29, 28–34 (2005) doi:10.1016/j.ejvs.2004.10.003, available online at http://www.sciencedirect.com on science doi:10.1016/j.ejvs.2004.10.003 (2005)

### Mid-term Survival and Costs of Treatment of Patients with Descending Thoracic Aortic Aneurysms; Endovascular vs. Open Repair: a Case-control Study

G.J. Glade, A.C. Vahl, W. Wisselink, M.A.M. Linsen and R. Balm

|                |                                                     | Endo (€) | Open (€) | Costs calculation remarks                                                                                     |
|----------------|-----------------------------------------------------|----------|----------|---------------------------------------------------------------------------------------------------------------|
| Peri-operative |                                                     |          |          |                                                                                                               |
|                | Operation costs.<br>Including anaes-<br>thesia time | 1333     | 4000     | Endo: €500/h, Open: €800/h. including distal perfusion and personnel                                          |
|                | Prosthesis                                          | 10,000   | 500      | Two Talent stents/patient Dacron graft for open                                                               |
|                | Specialists                                         | 600      | 1000     | Endo: surgeon and radiologist; open surgeon and cardiothoracic surgeon                                        |
|                | Radiological<br>investigations                      | 2000     | 400      |                                                                                                               |
|                | Laboratory                                          | 200      | 200      |                                                                                                               |
| Nursing costs  | •                                                   |          |          |                                                                                                               |
| · ·            | Intensive care                                      | 2310     | 18,150   | Mean stay see text                                                                                            |
|                | Ward                                                | 1620     | 3420     | Mean stay see text                                                                                            |
| Post-operative |                                                     |          |          | •                                                                                                             |
| •              | Paraplegia reha-<br>bilitation                      | 2600     | 6100     | Costs of life long care (rehospitalisation etc.) not<br>included. Calculation according to percentages in tex |
| Total          |                                                     | 20,663   | 33,770   | 0 1 0                                                                                                         |





### Conclusion

- TEVAR has lower perioperative mortality and morbidity compared to OSR
- TEVAR has lower costs compared to OSR
- TEVAR has superior QOL when compared to OSR
- TEVAR has lower/similar SCI incidence compared to OSR
- Survival long-term outcomes are similar for TEVAR and OSR
- CTDs still represent indications to OSR
- Most of the reinterventions after TEVAR are performed endovascularly



# Surgical trauma TEVAR VS OSR Patient's treatment preference





### **SORRY...** BUT



THERE IS NO U-TERM FOR TEVAR!!!

**BYE-BYE OPEN** 

THANK YOU FOR YOUR ATTENTION

felice.pecoraro@unipa.it

