

Overlay and dose reduction during aortic procedures

Jason Constantinou MD, FRCS

Disclosure

I do not have any potential conflict of interest

Radiation doses from Imaging procedures

Type of Procedure	Average Adult Effective Dose (mSv)	Estimated Dose Equivalent (No. of Chest X-rays)
Dental X-ray	0.005-0.01 ^{6a}	0.25-0.5
Chest X-ray	0.02	1
Mammography	0.4	20
СТ	2-16 ^{6b}	100-800
Nuclear Medicine	0.2-41 ^{6c}	10-2050
Interventional Fluoroscopy	5-70 ^{6d}	250-3500
		+

Dose reported for IR EVAR

First author	Year	n	FT (min)	Median DAP (Gy.cm ²)
Dose reported f	for abdon	ninal ao	rtic endografting	
Geijier ⁷⁷	2005	24	21.4 (7.4-78.9)*	60.1 (16.6-195) ^a
Ho ⁷⁸	2007	30		
Weiss ⁷⁹	2008	12	20.6 (12.6-34.2) ^b	151.7 (52.1-245.4) ^b
Weerakkody ⁸⁰	2008	96	21 (16-31)	
Kalef-Ezra ⁶³	2009	62	18 (4.3-75)*	37.4 (9-139) ^a
Kuhelj ⁸¹	2010	172	17 (2.9-97.8)"	153 (35-700) ^a
Jones ⁸²	2010	320	29.4 ± 23.3 ^d	46.9 ± 28.4 ^d
Howells ⁸³	2012	630	18 (2.4-161)	173 (109.4-3343.4)*
Walsh ⁸⁴	2012	111	18.5 ^c	85.8 ^c
Maurel ⁵⁶	2012	188	9.36 (1.76-67.1) ^a	30 (4.3-280) ^a
Peach ⁶⁹	2012	57	20.0 (4.8-49.3) ^a	69 (19.1–950) ^a
		65	16.2 (3.1–51.1) ^a	49 (12.5—133) ^a
Fossaceca ⁸⁵	2012	153		78 (27-370)
Patel ⁸⁶	2013	26	19.5 (14.4-31.5)	97.3 (55.4-167.9)
Blaszak ⁸⁷	2014	266		271 (37-1,760) ^b
	2014	31		276 (64-625) ^b
Hertault ⁴⁵	2014	44	10.6 (9.1-14.7)	12.2 (8.7-19.9)

DAP range 12-276 Gy.cm²

Mean DAP 105Gy.cm²

Hertault A, et al., Minimizing Radiation Exposure During Endovascular Procedures: Basic Knowledge, Literature Review, and Reporting Standards, European Journal of Vascular and Endovascular Surgery (2015), http://dx.doi.org/10.1016/j.ejvs.2015.01.014

Dose reported for FEVAR/BEVAR

First author	Year	n	FT (min)	Median DAP (Gy.cm ²)
Dose reported	for comp	lex aort	ic endografting	
Panuccio ⁸⁹	2011	18	140.7 ± 64.4 ^d	$1,005.7 \pm 627.8$ ^d
		29	81.9 ± 45.8 ^d	642.5 ± 311.6 ^d
Howells ⁸³	2012	53	58 (6.7-212.0)	320.6 (172.1-2133.2)
Maurel ⁵⁶	2012	54	27.2 (2.1-69.1) ^a	72.8 (11.0-290.0) ^a
		20	42.98 (2.38-95.5)*	159.5 (29.8-777.0) ^a
Tacher ⁹⁰	2013	9	82 ± 46^{d}	$1,188 \pm 1,067^{d}$
		14	42 ± 22^{d}	984 ± 581^{d}
		14	80 ± 36^{b}	656 ± 457 ^b
Hertault ⁴⁵	2014	18	30.7 (20.2-40.5)	43.7 (24.7-57.5)
	and the second	20	39.5 (34.8-51.6)	47.4 (37.2-108.2)

DAP range 44-1188Gy.cm² Mean DAP 511Gy.cm²

Hertault A, et al., Minimizing Radiation Exposure During Endovascular Procedures: Basic Knowledge, Literature Review, and Reporting Standards, European Journal of Vascular and Endovascular Surgery (2015), http://dx.doi.org/10.1016/j.ejvs.2015.01.014

Minimizing radiation Exposure

- ALARA Principles
 - Dedicated Radiation education
 - Low frame rate
 - Reduce time on Pedal
 - Low dose setting
 - Minimise DSA, store fluoroscopy loops

Minimizing radiation Exposure

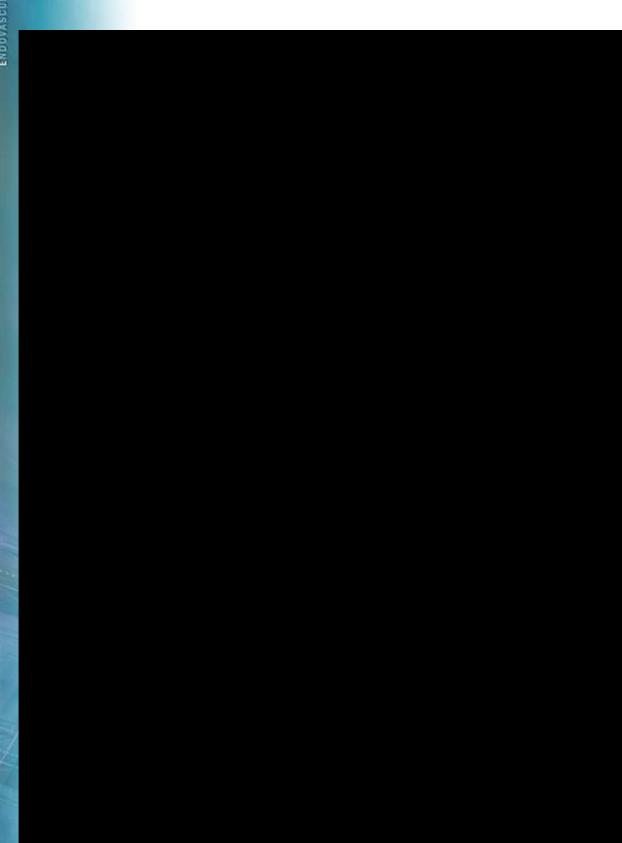
- Collimation reduce the field of view
- Minimise magnification use large monitors
- Reduce Angulation LAO/RAO
- Operator controlled imaging....30% Reduction
- Shields, Lead Garments and stand back!
- Advanced imaging **FUSION**

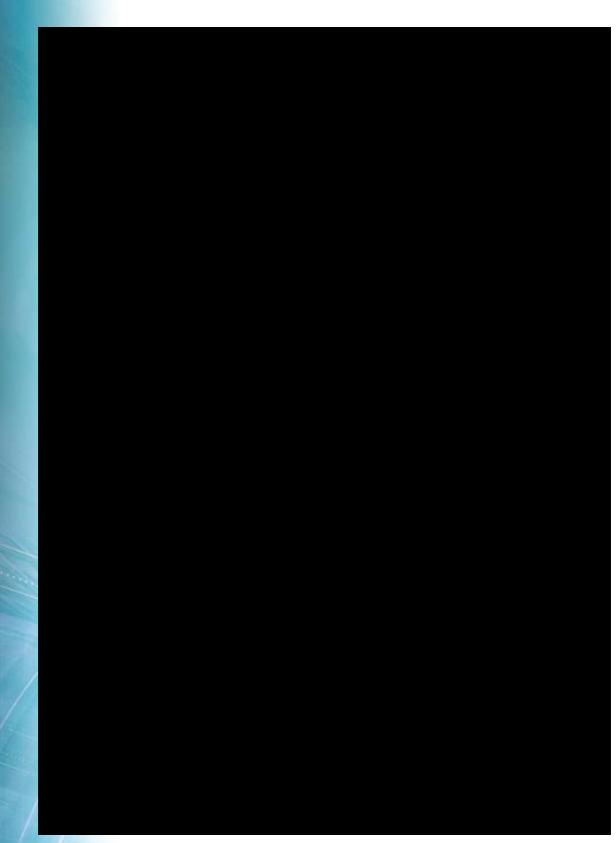
The Steps of Fusion

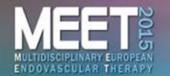
- 1. Vessel marking on pre op CT Angio
- 2. Cone Beam CT
- 3. Registration of bone landmarks with CTA



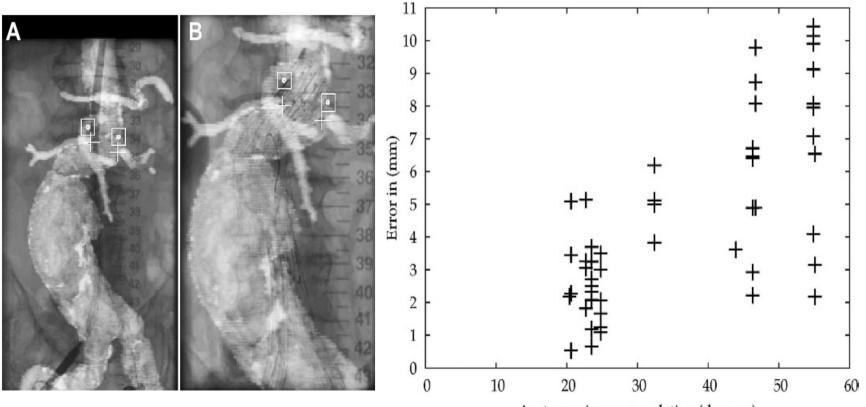
Image from Carrell et al, JEVT 2010







Inaccuracies of fusion


- Time lapse pre op CT and procedure
- Pt was positioned differently for pre op CT angio
- Stiff wires and endograft delivery device

Deformation

• Severe angulation leads to errors of registration due to deformation as the SG is placed

Aorta maximum angulation (degrees)

Carrell et al, JEVT 2010

Reported Experience with Fusion

Intraoperative C-arm cone-beam computed tomography in fenestrated/branched aortic endografting

Martijn L. Dijkstra, BA,^a Matthew J. Eagleton, MD,^{a,b} Roy K. Greenberg, MD,^{a,b} Tara Mastracci, MD,^a and Adrian Hernandez, MD, PhD,^c Cleveland, Ohio

Objectives: To c (cone-beam co exclusion in fer Methods: Patien groups. The CI fusion imaging patients under compared with and thoracoabd postprocedural of the mean, or

N=40 patients

- CBCT (Fusion) compared with No fusion
- Average dose for fusion 0.18 to 0.29 Gy depending on the protocol used

Resulte Forty r				_
	No Fusion	With 3D-3D fusion	Р	r contrast dose (94 cc [72-131] vs ainutes [273-522] vs 387 minutes), $P = .932$); this difference did not CBCT" group and compared with
Ν	49	40		(n = 6) endoleaks were identified his was confirmed by MDCT. The nt] vs 100 cc [80-125]; $P < .0001$).
Radiation exposure (Gy)	7 (5-10)	7 (4-12)	0.782	for postoperative CBCT. EVAR. Intraoperative use utilizing ity to evaluate successful aneurysm on we are able to obtain from the otentially decrease the subsequent
Contrast (mL)	136 (96- 199)	94 (72-131)	0.001	

Dijkstra et al, JVS, 2011

Reported Experience with Fusion

Three-dimensional fusion computed tomography decreases radiation exposure, procedure time, and contrast use during fenestrated endovascular aortic repair

Michael M. McNally, MD, Salvatore T. Scali, MD, Robert J. Feezor, MD, Daniel Neal, MS, Thomas S. Huber, MD, PhD, and Adam W. Beck, MD, *Gainesville*, *Fla*

Objective: Endovascular surgery has revolutionized the come at the cost of increased radiation and contradimensional (3D) fusion computed tomography (CT The purpose of this analysis was to determine the eff fenestrated endovascular aortic repair (FEVAR). *Methods:* Our institutional database was reviewed to id using 3D fusion CT were compared with patients trea this technology when procedures were performed in a Primary end points included patient radiation expor contrast usage (mL), and procedure time (minutes). P revascularized with a stent graft, and operative outcon *Results:* A total of 72 patients (41 before vs 31 a Contember 2012 threads March 2014. For two use N=72

- 41 no fusion (fixed hybrid room)31 with fusion
 - Siemens, 3d-3d; noncontrast, 5s spin

	No Fusion	With 3D-3D fusion	Ρ	me (63 ± 2 rative 3D fu posure (540), contrast u .002) was r
Ν	41	31		ward being l
Radiation Exposure (Gy)	5 +/-0.28	2.2 +/- 1.3	0.0001	copy is an i ctice, and a
Contrast (mL)	86 +/- 25	34 +/- 15	0.0001	n the literat l that FEV procedures

me $(63 \pm 29 \text{ vs } 41 \pm 11 \text{ minutes};$ rative 3D fusion CT. Similarly, for posure $(5400 \pm 2225 \text{ vs } 2700 \pm 2000)$, contrast usage $(90 \pm 25 \text{ vs } 39 \pm 0.002)$ was noted. Estimated blood ward being lower for all patients in

ng during FEVAR can significantly use the overall physiologic impact of

copy is an important radiation source ctice, and an increasing focus on the radiation exposure to patients and n the literature.⁴⁻¹⁴ Notably, a recent I that FEVAR is one of the most procedures that vascular specialists

McNally et al, JVS 2014

Reported Experience with Fusion

Impact of Hybrid Rooms with Image Fusion on Radiation Exposure during Endovascular Aortic Repair

A. Hertault ^a, B. Maurel ^a, J. Sobocinski ^a, T. Martin Gonzalez ^a, M. Le Roux ^a, R. Azzaoui ^a, M. Midulla ^b, S. Haulon ^{a,*}

^a Vascular Surgery, Hôpital Cardiologique, CHRU de Lille, INSERM U1008, Université Lille Nord de France, 59037 Lille Cedex, France ^b Radiology, Hôpital Cardiologique, CHRU Lille, INSERM U1008, Université Lille Nord de France, 59037 Lille Cedex, France

WHAT THIS PAPER ADDS Experience has shown that the reduced the exposure of patients without jeopardising the overall

n=102

All patients had fusion guided procedures

Objective: To evaluate exposure intraoperative guidance by preop

Methods: All consecutive patients who underwent standard bifurcated (BIF) or thoracic (THO), and complex

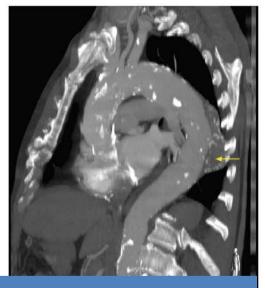
3d-2d fusion (GE system)

Procedure	N	DAP (Gy.cm2)	Contrast (mL)	ly enrolled. Indirect dose—area product (DAP), corded. These data were compared with a previously other literature. Direct DAP and peak skin dose were s median (interquartile range). derwent standard (56.8%) or complex (43.2%) EVAR.
IR EVAR	44	12.2	59	3.9); THO 26.0 (11.9–34.9); FEN 43.7 (24.7–57.5); = 10.6 (9.1–14.7); THO 8.9 (6.0–10.5); FEN 30.7 n volume (mL) was as follows: BIF 59.0 (50.0–75.0);
BEVAR	20	47.4	120	20.0 (100.0–170.0). When compared with a previous
FEVAR	18	43.7	105	 Significant reduction in DAP and Contrast volume
TEVAR	14	26.0	80	

ay 2014, Available online 17 July 2014

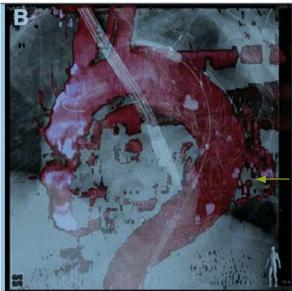
Keywords: Aorta, Endovascular procedures, Fusion imaging, Hybrid room, Radiation, Radiation protection

Fusion Imaging: Towards a Zero Contrast Future


Images in Cardiovascular Medicine

Zero-Contrast Thoracic Endovascular Aortic Repair Using Image Fusion

Hicham Kobeiter, MD; Julien Nahum, MD; Jean-Pierre Becquemin, MD


In recent years, thoracic endovascular aortic repair (TEVAR) has been established as a reliable alternative to conventional surgical repair.1 The success of endovascular repair is critically dependent on adequate stent-graft deployment. Catheter-based 2-dimensional angiography is routinely performed before, during, and after stent-graft placement to ensure accurate positioning and confirm the absence of complications such as perigraft endoleaks. Computed tomography angiography (CTA) is also used to plan stent-graft deployment before intervention. Recent advances in imaging technology allow reusing the diagnostic volumetric data sets during intervention by overlying live fluoroscopy over the preacquired CTA.2 This article describes the first case of TEVAR under guidance of CTA superimposed on live fluoroscopy without the use of iodinated contrast agent before, during, and after deployment.

An 82-year-old man was admitted to the hospital with an asymptomatic thoracic aneurysm of 65-mm diameter on the

CBCT pre and post
 No gain in DAP (55Gy.cm²)
 NO CONTRAST

Imaging and the Vascular Surgeon

- Advances in technology and improvement in hybrid theatres has resulted in a decrease in radiation and contrast dose for the patient
- Strict application to ALARA principles vital
- Future developments will get us closer to the holy grail of a zero radiation and zero contrast procedure

