Crowne Plaza St Peter's Hotel

Rome, Italy June 9-11 2013

The Use of Video-motion Analysis to determine the Impact of Anatomical Complexity on Endovascular Performance in Carotid Artery Stenting

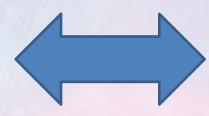
Rolls A¹, Riga C¹, Rahim S¹, Willaert W², Van Herzeele I³, Stoyanov D⁴, Hamady M¹, Cheshire N¹, Bicknell C¹

Imperial Vascular Unit, Imperial College Healthcare, London, UK
 AZ Maria Middelares Hospitals, Gent, Belgium
 Department of Thoracic and Vascular Surgery, Gent University Hospital, Belgium
 Centre for Medical Image Computing and dept. of Computer Science, University College London

Crowne Plaza St Peter's Hotel

Rome, Italy June 9-11 2013

Faculty disclosure


Alex Rolls

I have **no financial relationships** to disclose.

Imperial College

Introduction How is Endovascular Skill **Presently Assessed?**

Simulator-derived metrics

Quantitative

Procedure and fluoroscopy time¹

- Van Herzeele et al, J Vasc Surg 2007; 46: 855-63
- Van Herzeele et al, EJVES 2008; 35:541-550

HIGH FIDELITY SIMULATION

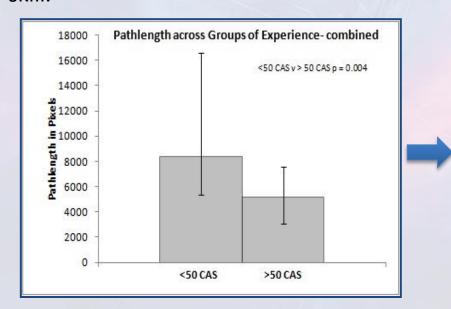
Validated, but *surrogate* markers

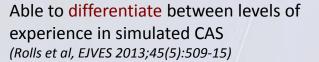
June 9-11, Rome, ITALY www.meetcongress.com

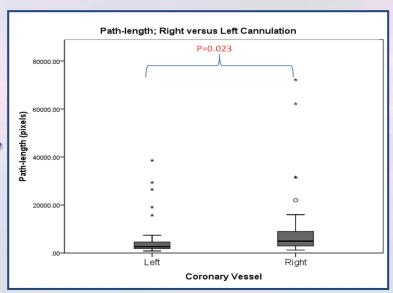
			sment of technical skills cale: generic endovascular	skills	
Interventionalist code:		Procedure:		Date:	
	Please circle the physici	an's perform	ance on the following scale	ı:	
Respect for tissue (stenosis or occlusion)	Frequently used unnecessary force on tissue or caused damage by inappropriate use of material	2	3 Careful handing of tissue but occasionally caused inadvertent damage.	4	5 Consistently approached tissues appropriately with minimal damage.
Time and motion	1 Make unnecessary moves.	2	3 Efficient time/motion but some unnecessary moves.	4	5 Clear economy of movement and maximum efficiency.
Knowledge of endovascular material	1 Frequently asked for the wrong tool or used an inappropriate material	2	3 Knew names of most endovascular toolsl and used appropriate material	4	5 Obviously familiar with endovascular material and their names.
Handling of endovascular material	Repeatedly awkward moves and unsure with loss of access, poor slability of the tools and inaccurate positioning of balloon/stent	2	3 Competent use with hardy any loss of access, moderate slability of tools and good positioning of balloon/stent but appeared stiff and awkward occasionally	4	Fluid movements with stability of the tods, maintenance of access an perfect positioning of balloon/stent
Flow of intervention	1 Frequently stopped intervention or needed to discuss the next move.	2	3 Demonstrated some forward planning and reasonable progression of procedure.	4	5 Obviously planned course of intervention with efficiency from one move to another
Knowledge of procedure	1 Insufficient knowledge. Locked unsure and hesitant.	2	3 Knew all important steps of the intervention.	4	5 Demonstrated familiarity with all steps of the intervention.
Overall performance	1 Very poor	2	3 Competent	4	5 Clearly superior
Quality of final product	1 Very poor	2	3 Competent	4	5 Clearly superior

Generic & Procedure-specific Rating Scales

Qualitative


Eg. Knowledge, handling, flow, overall performance²


Video-motion Analysis Software


 Video-motion analysis new way of assessing technique and relies on tracking of endovascular tools in fluoroscopic video-li sequences to provide data on total catheter-tip movement or path-length (PL)

at our unit; overall

 VMA is the subject of extensive investigation at our unit; overall objective is to validate as a reliable measure of endovascular skill.

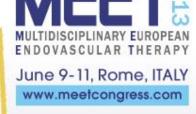
In a series of 50 coronary angiographies, identified differences between R and L coronaries

ne, ITALY

Objectives

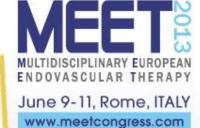
- To quantify the overall effect of anatomical complexity on efficiency of endovascular performance in a complex procedure.
- To identify anatomical components during Carotid Artery Stenting which present a technical challenge to the operator.

Method



Green Case (<4.9) Type 1 arch Symptomatic 90% stenosis LICA

Amber Case (5.0-6.9)
Bovine arch
angled LCCA takeoff
Symptomatic
(aphasia) 80%
stenosis LICA


Red Case (>7.0)
Type 2 arch
Extremely tortuous
RCCA.
Symptomatic 80%
stenosis RICA

20 novice interventionalists each performed Green, Amber and Red cases in random order. *Willaert et al, JVS 2012;* 56(6):1763-70

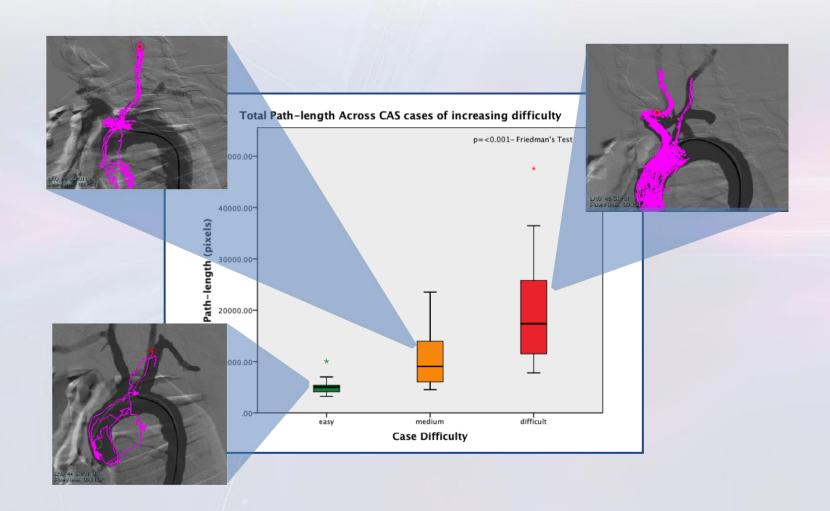
Method

60 cases analysed by single observer using VMA software, procedure divided into pre-defined operative stages

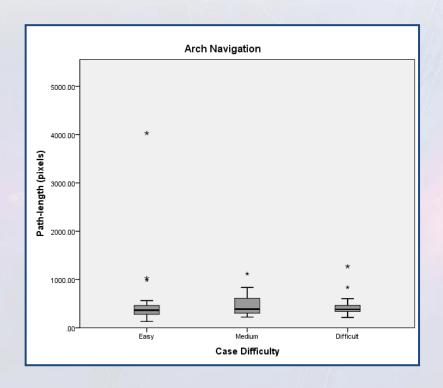
Arch navigation: 3rd rib - aortic root

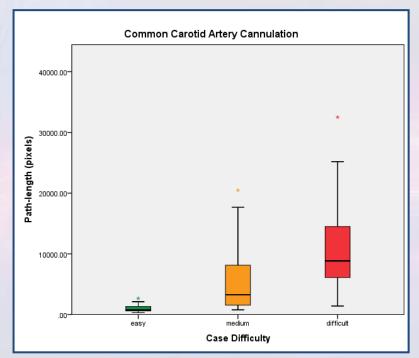
CCA cannulation: aortic rootstable resting position in CCA for further tool deployment

ECA manipulation: stable CCA position- distal tip of ECA

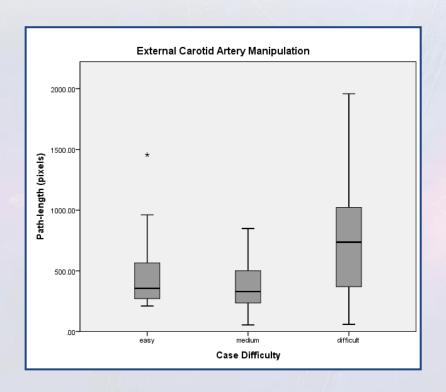

ICA manipulation: stable CCA position- deployment of EPD

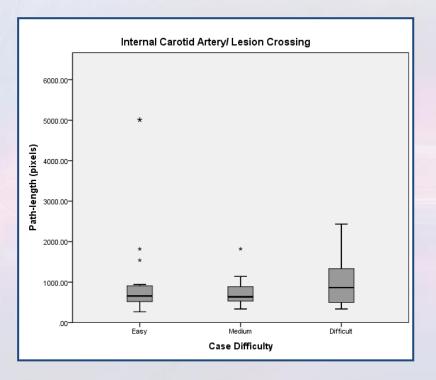
Results




June 9-11, Rome, ITALY www.meetcongress.com

Results




p=0.449- Friedman's Test

p=<0.001- Friedman's Test

Results

p=0.405- Friedman's Test

p=0.705- Friedman's Test

Conclusions

- Anatomical Variation significantly impacts efficiency of performance measured by VMA data, demonstrating a step-wise deterioration with progressive grades of anatomical difficulty.
- Software able to split the procedure into key components and objectively differentiate challenging from easy procedural phases.
- In CAS, CCA cannulation clearly the discriminating procedural phase which in hard cases leads to excess movement within the arch and may result in increased emboli.

10.4 m of movement