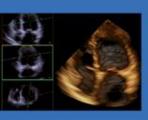


EuroValve April 26-27, 2018


Is TAVR already arguable in low risk patients? NO

J. Kefer, MD, PhD, FESC

Interventional Cardiology Head of the cardiac catheterization laboratory Cliniques universitaires Saint-Luc Brussels, Belgium

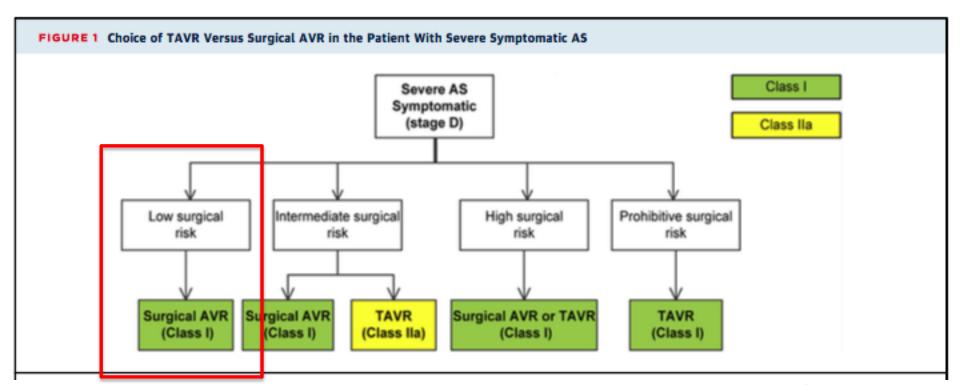
www.eurovalvecongress.com

EuroValve April 26-27, 2018

Faculty disclosure

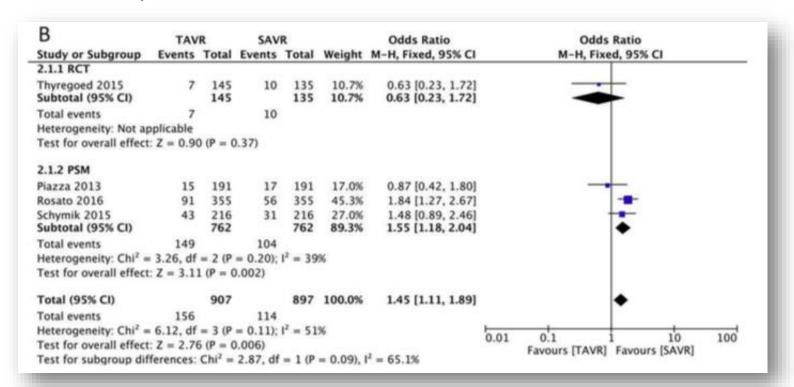
Joelle KEFER

I disclose the following financial relationships:


Consultant for StJude-Abbott Receive grant/research support from Edwards Lifesciences

www.eurovalvecongress.com

Table 5. Risk Assessment Combining STS Risk Estimate, Frailty, Major Organ System Dysfunction, and Procedure-Specific Impediments


	s Column) in This Colu	umn) in This Column)	in This Column)
STS PROM* <4% AND Frailty† None	4%-8% OR 1 Index (mild)	>8% OR ≥2 Indices (moderate to seve	Predicted risk with surgery of death or major morbidity (all-cause) re) >50% at 1 y
AND Major organ system compromise None	OR 1 Organ system	OR No more than 2 organ system	OR s ≥3 Organ systems
not to be improved postoperatively‡ AND Procedure-specific impediment§ None	OR Possible procedu impediment	OR re-specific Possible procedure-specific impediment	OR Severe procedure-specific impediment

Transcatheter versus surgical aortic valve replacement in patients at low surgical risk: A meta-analysis of randomized trials and propensity score matched observational studies

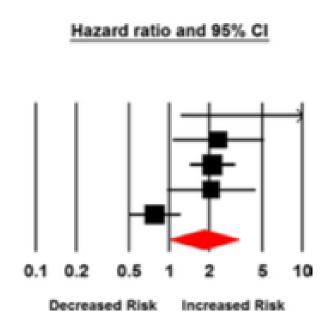
Guy Witberg, MD^{1,2*}
Adi Lador, MD^{1,2*}
Dafna Yahav, MD^{2,3}

Cath and Cardiovasc Interv 2018 Feb

The short-term mortality was similar with either TAVR or SAVR (2.2% for TAVR and 2.6% for SAVR, RR 0.89, 95% CI 0.56–1.41, P =0.62).

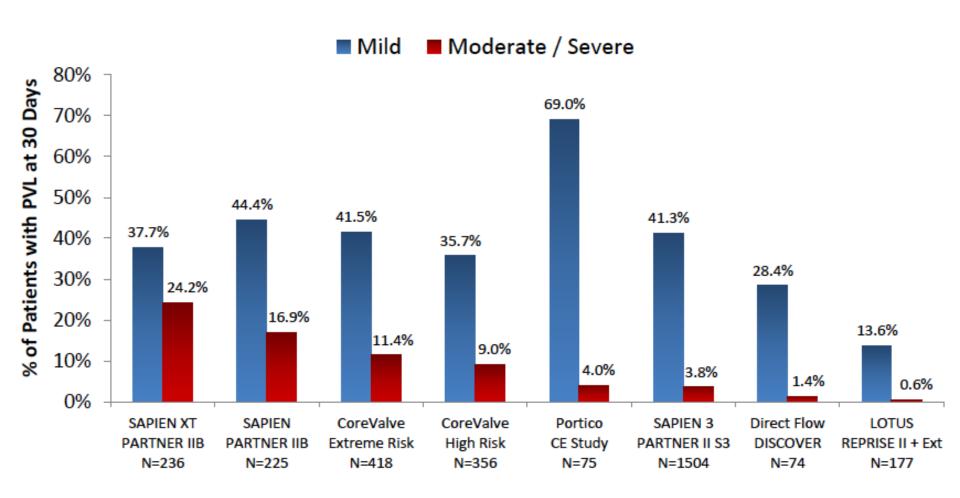
TAVR was associated with increased risk for intermediate-term mortality (17.2% for TAVR and 12.7% for SAVR, RR 1.45, 95% CI 1.11-1.89, P =0.006).

Impact of PVL


A Aorta Left atrium Valve Left ventricle cusp

Metanalysis of 45 studies, 12.926 patients

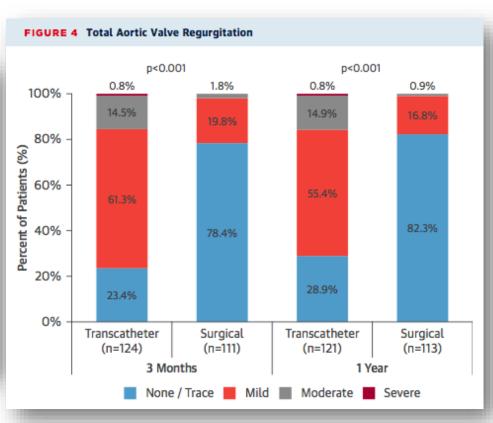
Even mild, aortic regurgitation has an impact on overall mortality after TAVI


Hazard Ratio of Mild AR on Overall mortality

Study name	Statistics for each study					
	Hazard ratio	Lower limit	Upper limit	Z-Value	p-Value	
Lemos	10.080	1.229	82.673	2.152	0.031	
Sinning	2.342	1.066	5.145	2.119	0.034	
Kodali	2.110	1.433	3.107	3.782	0.000	
Fraccaro	2.064	0.968	4.400	1.876	0.061	
Tamburino	0.780	0.499	1.218	-1.092	0.275	
AII (N=1620)	1.829	1.005	3.329	1.975	0.048	

Athappan et al. JACC 2013;61:1585-1595

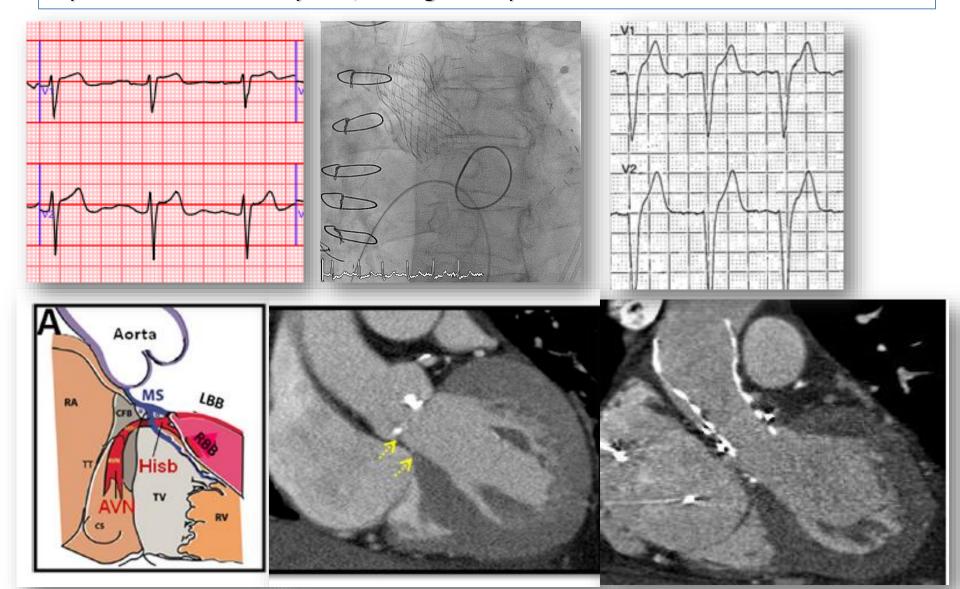
Paravalvular aortic regurgitation


¹Leon, et. al. presented at ACC 2013; ²Popma, et al., J Am Coll Cardiol 2014; 63: 1972-81; ³Adams, et al., N Engl J Med 2014; 370: 1790-8; ⁴Manoharan, et al., et. al. presented at TCT 2014; ³Kodali, et al., presented at ACC 2015; ⁶Schofer, et al., J Am Coll Cardiol 2014; 63: 763-8; ⁷Meredith, et al., presented at PCR London Valves 2014

Transcatheter Versus Surgical Aortic Valve Replacement in Patients With Severe Aortic Valve Stenosis

1-Year Results From the All-Comers NOTION Randomized Clinical Trial

Thyregod et al. J Am Coll Cardiol 2015;65:2184-94


TABLE 1 Baseline Characteristics					
	TAVR* (n = 145)	SAVR* (n = 135)			
Age, yrs	79.2 ± 4.9	79.0 ± 4.7			
Male	78/145 (53.8)	71/135 (52.6)			
NYHA functional classification					
1	7/144 (4.9)	3/134 (2.2)			
II	67/144 (46.5)	70/134 (52.2)			
III	67/144 (46.5)	57/134 (42.5)			
IV	3/144 (2.1)	4/134 (3.0)			
STS-PROM score, %	$\textbf{2.9} \pm \textbf{1.6}$	3.1 ± 1.7			
Logistic EuroSCORE, %	8.4 ± 4.0	8.9 ± 5.5			
Logistic EuroSCORE II, %	1.9 ± 1.2	2.0 ± 1.3			

> 50% of patients had mild aortic regurgitation @ 1yr after TAVI

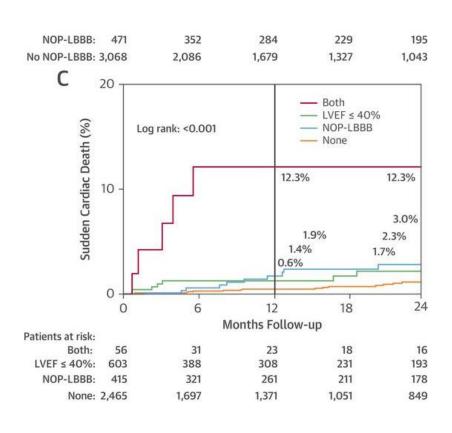
Anatomical interaction:

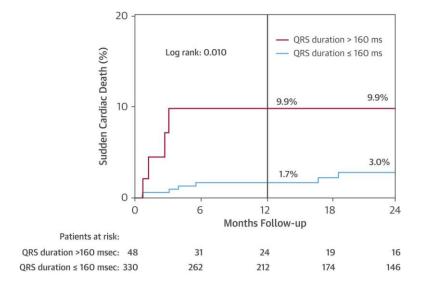
the stent frame of the TAVI prosthesis may exerce a mechanical stress on the LV wall, septum and conduction system, leading to complete AV-block and new LBBB.

LBBB post TAVR: A predictor of SCD!

Late Cardiac Death in Patients Undergoing Transcatheter Aortic Valve Replacement

Incidence and Predictors of Advanced Heart Failure and Sudden Cardiac Death

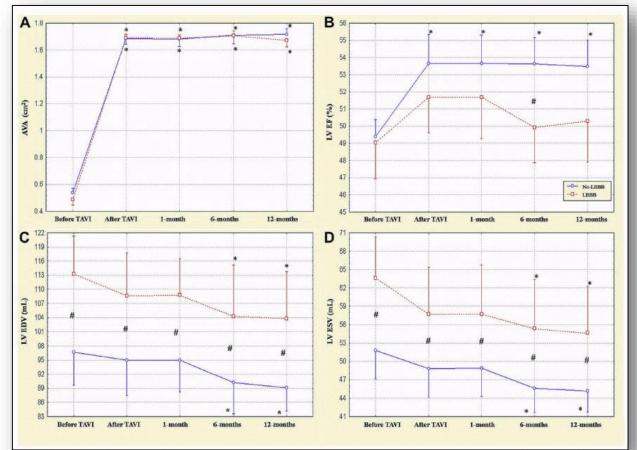

- ✓ **3.729** patients who underwent TAVR (balloon 57% self ex-pandable 43%)
- √ F-up 22 ± 18 months
- ✓ Endpoint: SCD
- ✓ 3 groups: NO NOP-LBBB, NOP-LBBB (12.6%), NOP-LBBB + PMK (2.5%)
- → New-onset persistent LBBB following TAVR (RR of SCD x2.5)
- → New-onset persistent LBBB and a QRS duration <u>>160 ms</u> (RR of SCD x5!!!)


LBBB post TAVR: A predictor of SCD!

Late Cardiac Death in Patients Undergoing Transcatheter Aortic Valve Replacement

Incidence and Predictors of Advanced Heart Failure and Sudden Cardiac Death

TABLE 6 Electrocardiographic Predictors of Sudden Cardiac Death in Patients With New-Onset Persistent Left Bundle-Branch Block Following TAVR (n=471)

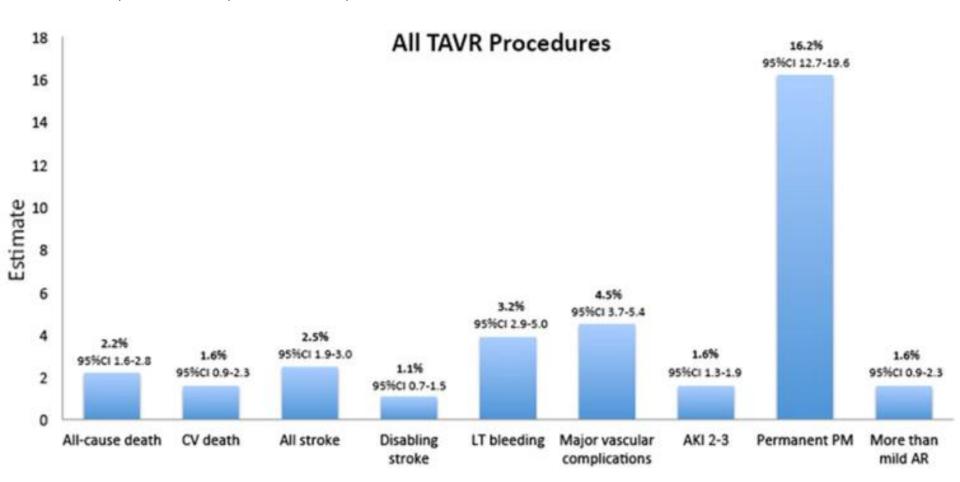

	Univariate HR	
	(95% CI)	p Value
Baseline		
QRS duration	1.01 (0.98-1.04)	0.551
PR >200 ms	-	_
Discharge		
QRS duration	1.02 (0.99-1.05)	0.162
QRS >160 ms	4.78 (1.56-14.63)	0.006
PR >200 ms	0.26 (0.03-2.20)	0.218

Am J Cardiol 2015;116:125-131

Impact on Left Ventricular Function and Remodeling and on 1-Year Outcome in Patients With Left Bundle Branch Block After Transcatheter Aortic Valve Implantation

Nazario Carrabba, MD*, Renato Valenti, MD, Angela Migliorini, MD, Marco Marrani, MD, Giulia Cantini, MD, Guido Parodi, MD, PhD, Emilio Vincenzo Dovellini, MD, and David Antoniucci, MD

LBBB: less reverse remodeling, less recovery of LV systolic function, higher rate of PCMK


Transcatheter aortic valve replacement with new-generation devices: A systematic review and meta-analysis

Marco Barbanti ^{a,*}, Sergio Buccheri ^a, Josep Rodés-Cabau ^b, Simona Gulino ^a, Philippe Généreux ^c, Gerlando Pilato ^a, Danny Dvir ^d, Andrea Picci ^a, Giuliano Costa ^a, Corrado Tamburino ^a, Martin B. Leon ^e, John G. Webb ^d

Int J Cardiol 2017;245:83-89

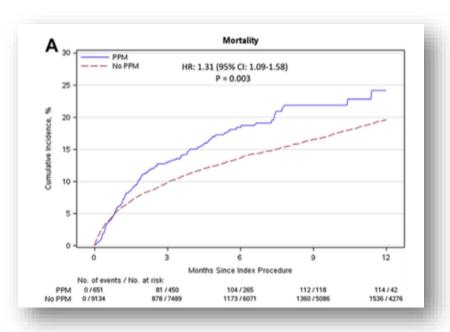
SAPIEN 3 (n = 5423, 45.9%), Lotus Valve (n = 3007, %), Portico (n = 130, 1.1%), JenaValve (n = 345, 2.9%), Symetis Acurate (n = 1314, 11,1%), and Evolut R (n = 1603, 13.6%).

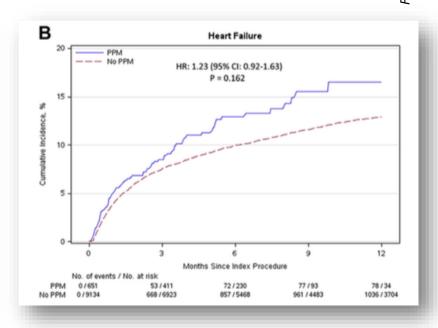
Chronic pacing and adverse outcomes after transcatheter aortic valve implantation.

<u>Dizon JM</u>¹, <u>Nazif TM</u>¹, <u>Hess PL</u>², <u>Biviano A</u>¹, <u>Garan H</u>³, <u>Douglas PS</u>², <u>Kapadia S</u>⁴, <u>Babaliaros V</u>⁵, <u>Herrmann HC</u>⁶, <u>Szeto WY</u>⁶, <u>Jilaihawi H</u>⁷, <u>Fearon WF</u>⁸, <u>Tuzcu EM</u>⁴, <u>Pichard AD</u>⁹, <u>Makkar R</u>⁷, <u>Williams M</u>¹⁰, <u>Hahn RT</u>¹, <u>Xu K</u>¹¹, <u>Smith CR</u>¹, <u>Leon MB</u>¹, <u>Kodali SK</u>¹; <u>PARTNER Publications Office</u>.

Author information

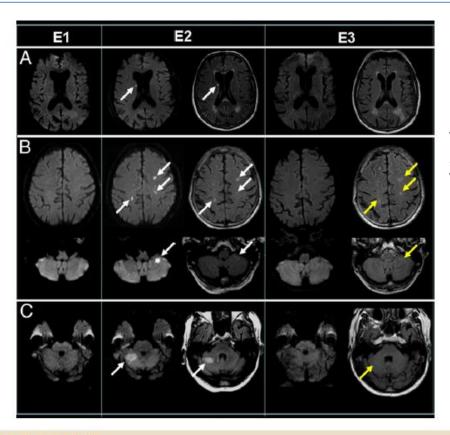
Abstract


OBJECTIVE: Many patients undergoing transcatheter aortic valve implantation (**TAVI**) have a preexisting, permanent pacemaker (PPM) or receive one as a consequence of the procedure. We hypothesised that chronic **pacing** may have adverse effects on **TAVI** outcomes.


METHODS AND RESULTS: Four groups of patients undergoing **TAVI** in the Placement of Aortic Transcatheter Valves (PARTNER) trial and registries were compared: prior PPM (n=586), new PPM (n=173), no PPM (n=1612), and left bundle branch block (LBBB)/no PPM (n=160). At 1 year, prior PPM, new PPM and LBBB/no PPM had higher all-cause mortality than no PPM (27.4%, 26.3%, 27.7% and 20.0%, p<0.05), and prior PPM or new PPM had higher rehospitalisation or mortality/rehospitalisation (p<0.04). By Cox regression analysis, new PPM (HR 1.38, 1.00 to 1.89, p=0.05) and prior PPM (HR 1.31, 1.08 to 1.60, p=0.006) were independently associated with 1-year mortality. Surviving prior PPM, new PPM and LBBB/no PPM patients had lower LVEF at 1 year relative to no PPM (50.5%, 55.4%, 48.9% and 57.6%, p<0.01). Prior PPM had worsened recovery of LVEF **after TAVI** (Δ =10.0 prior vs 19.7% no PPM for baseline LVEF <35%, p<0.0001; Δ =4.1 prior vs 7.4% no PPM for baseline LVEF 35-50%, p=0.006). Paced ECGs displayed a high prevalence of RV **pacing** (>88%).

CONCLUSIONS: In the PARTNER trial, prior PPM, along with new PPM and chronic LBBB patients, had worsened clinical and echocardiographic outcomes relative to no PPM patients, and the presence of a PPM was independently associated with 1-year mortality. Ventricular-dyssynchrony due to chronic RV **pacing** may be mechanistically responsible for these findings.

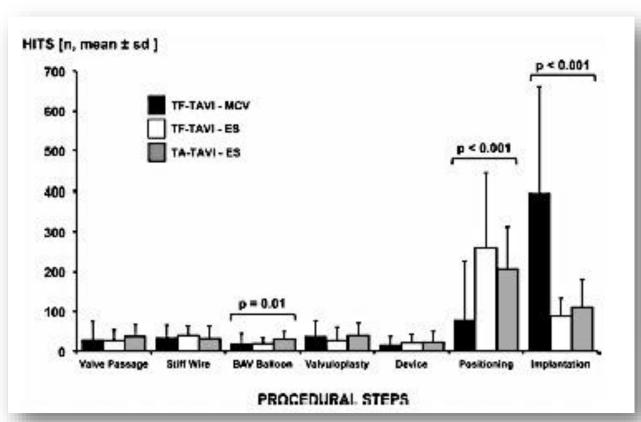
Incidence, Predictors, and Outcomes of Permanent Pacemaker Implantation Following Transcatheter Aortic Valve Replacement

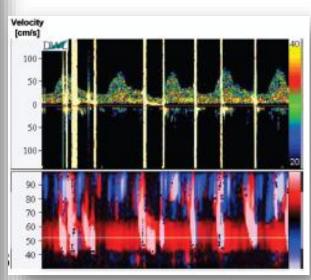

Analysis From the U.S. Society of Thoracic Surgeons/ American College of Cardiology TVT Registry

Early PPM implantation is a common complication following TAVR, and it is associated with higher mortality and a composite of mortality or heart failure admission at 1 year.

TAVI-related stroke and cerebral embolism

73% of patients had new DW-MRI lesions 3.6 % of patients had stroke


Igure 2 TAVI-Related Cerebral Embolism


(A) Images obtained in an 83-year-old man show 1 ischemic lesion (arrow). The patient had no clinically apparent focal neurological deflicts after TAVI (NIHSS: 0). (B) A DW-MRI in a 73-year-old man demonstrates multiple, bilateral embolism of the cerebrum and cerebellium (arrows). Selected emboli demonstrate signal intensity in the fluid-attenuated inversion recovery sequence as sign of neuronal repair (yellow arrows). The patient had no clinically apparent focal neurological deflicts after TAVI (NIHSS: 0). (C) images obtained in an 84-year-old man show 1 ischemic lesion in the right cerebellium (arrow). The patient demonstrated transient ataxia (NIHSS: 4). Abbreviations as in Figure 1.

Cerebral Embolization During Transcatheter Aortic Valve Implantation

A Transcranial Doppler Study

HITS occured during positionning and implantation of the TAVI device (Sapien and Corevalve)

Filter-based cerebral embolic protection with transcatheter aortic valve implantation: the randomised MISTRAL-C trial

Published on 20 July 2016

no comment yet Aprint article Aprint article Aprint article Aprint article

Nicolas M. Van Mieghem^{1*}, MD, PhD; Lennart van Gils¹, MD; Habib Ahmad², MD; Floortje van Kesteren³, MD; Hendrik W. van der Werf⁴, MD; Guus Brueren⁵, MD, PhD; Michiel Storm⁶, MSc; Mattie Lenzen¹, PhD; Joost Daemen¹, MD, PhD; Ad F,M, van den Heuvel⁴, MD, PhD; Pim Tonino⁵, MD, PhD; Jan Baan³, MD, PhD; Peter J. Koudstaal⁶, MD, PhD; Marguerite E.I. Schipper⁷, MD, PhD; Aad van der Lugt², MD, PhD; Peter P.T. de Jaegere¹, MD, PhD

KEYWORDS

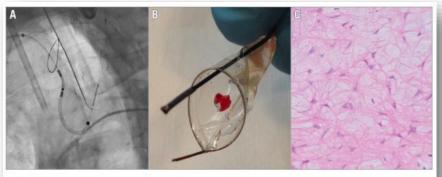
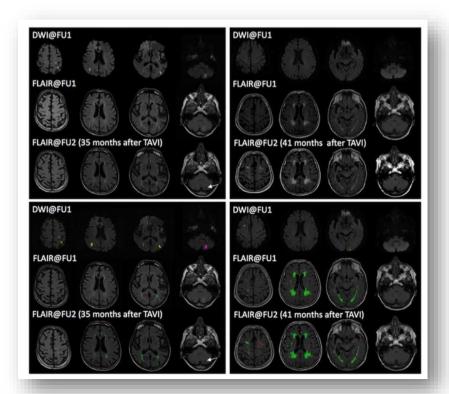


Figure 1. Sentinel dual filter system. A) Fluoroscopic image of the Sentinel CPS after deployment in the brachiocephalic trunk and left common carotid artery. B) Photograph of a retrieved filter containing embolic debris. C) Microscopic image showing the lamina spongiosa of the aortic valve (H&E staining, magnified ×20).



Filter-based embolic protection captures debris en route to the brain in all patients undergoing TAVI. This study suggests that its use can lead to fewer and overall smaller new brain lesions, as assessed by MRI, and preservation of neurocognitive performance early after TAVI.

Subacute Subclinical Brain Infarctions after Transcatheter Aortic Valve Implantation Negatively Impact Cognitive Function in Long-Term Follow-Up

PlosOne 2017 Feb

Alexander Ghanem^{1,2©}*, Jonas Dörner^{3,4©}, Leonie Schulze-Hagen², Andreas Müller⁴, Marius Wilsing², Jan-Malte Sinning², Julian Lütkens⁴, Christian Frerker¹, Karl-Heinz Kuck¹, Ingo Gräff⁵, Hans Schild⁴, Nikos Werner², Eberhard Grube², Georg Nickenig²*

Acute CVEs did not impact the trajectory of late silent brain infarctions (SBI), white-matter hyperintensities, and cerebral atrophy. Functionally, early CVEs did not affect cognitive function.

In contrast, patients with "new" SBIs after TAVI had a trend to cognitive deterioration in long-term follow-up

Conclusions: TAVI in a low risk patient

- ✓ Induces more aortic regurgitation than SAVR
- ✓ Induces more new LBBB and need for permanent PCMK than SAVR
- ✓ AR (even mild), LBBB and PCMK could have a negative impact on the outcome
- ✓ Generates new silent brain infarct potentially related with neurocognitive dysfunction
- ✓ Durability is not confirmed in large series
- ✓ Need for the results of large RCT (PARTNER 3, NOTION 2)