

Massimo Mancone

"Sapienza" Università di Roma Policlinico Umberto I Cardiologia Interventistica

• Expanding TAVR Clinical Indications

The PARTNER 3 Trial Study Design

Symptomatic Severe Calcific Aortic Stenosis

Low Risk ASSESSMENT by Heart Team (STS < 4%, TF only)

1:1 Randomization (n=1,228)

TF - TAVR (SAPIEN 3)

CT Imaging Sub-Study (n=200)

Actigraphy/QoL Sub-Study

Surgery (Bioprosthetic Valve)

CT Imaging Sub-Study (n=200)

Actigraphy/QoL Sub-Study

PARTNER 3 Registries

Alternative Access (n=100) (TA/TAo/Subclavian)

Bicuspid Valves (n=50)

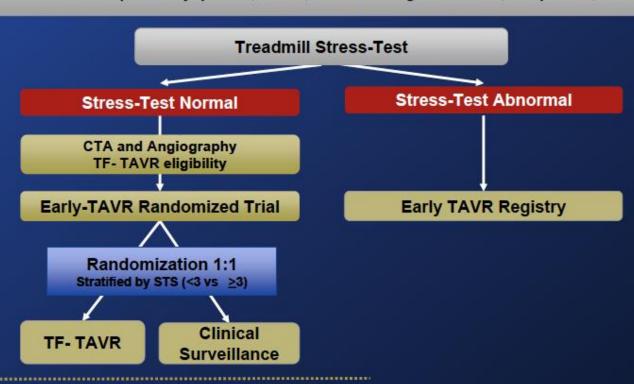
SAVR orTAVR ViV (n=100/25)

Mitral ViV or ViR (n=50/50)

PRIMARY ENDPOINT:

Composite of all-cause mortality, all strokes, or re-hospitalization at 1 year post-procedure

Follow-up: 30 days, 6 mos, 1 year and annually through 10 years



EARLY TAVR Trial Study Flow

Primary Endpoint (superiority): 2-year composite of all-cause mortality, all strokes, and repeat hospitalizations (CV)

TAVR UNLOAD Trial

Study Design

(600 patients, 1:1 Randomized)

TAVR UNLOAD Trial

International Multicenter Randomized Heart Failure
LVEF < 50%
NYHA ≥ 2
Optimal HF
therapy
(OHFT)
Moderate AS

TAVR + OHFT
OHFT
Alone

Follow-up: 1 month 6 months 1 year

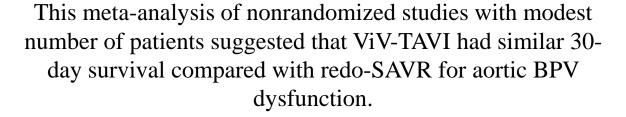
Clinical endpoints Symptoms Echo QoL

Primary Endpoint

Hierarchical occurrence of:

- § All-cause death
- § Disabling stroke
- § Hospitalizations for HF, aortic valve disease
- § Change in KCCQ

Reduced AFTERLOAD Improved LV systolic and diastolic function



Metanalysis of Transcatheter Valve-in-Valve Implantation Versus Redo Aortic Valve Surgery for Bioprosthetic Aortic Valve Dysfunction

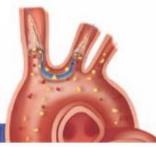
Study or Subgroup	log[Odds Ratio]	SE	Weight	Odds Ratio IV, Fixed, 95% CI	Odds Ratio IV, Fixed, 95% CI
Erlebach 2015	1.6887	1.5619	8.5%	5.41 [0.25, 115.58]	
Grubitzsc 2016	0.3629	0.9584	22.5%	1.44 [0.22, 9.41]	-
Silaschi 2016	-0.1942	0.8362	29.5%	0.82 [0.16, 4.24]	-
Spaziano 2017	-0.2364	0.7221	39.6%	0.79 [0.19, 3.25]	-
Total (95% CI)			100.0%	1.08 [0.44, 2.62]	•
Heterogeneity. Chi ² =	1.45, df = 3 (P =	100			
Test for overall effect		0.01 0.1 1 10 100 Favours ViV-TAVI Favours Redo-SVR			

• Expanding TAVR Clinical Indications

• TAVI Procedure – Will cerebral embolic protection become the standard for TAVR in the future?

TAVI AND CEREBROVASCULAR EVENTS

Stortecky, Windecker. Circulation 2012;126:2921-4



EMBOLIC PROTECTION DEVICES AND TAVI

Montage 2 Capture Device (Claret Medical)

Triguard Cerebral Deflector (Keystone Heart)

EVIDENCE FROM RANDOMIZED TRIALS

PROTAVI-C

RODÉS-CABAU ET AL JACC CARDIOVASC INTERV. 2014

41 patients

average volume of ischemic lesion

CLEAN-TAVI

HAUSSIG ET AL JAMA 2016

100 patients

frequency of ischemic cerebral lesions

SENTINEL

KAPADIA ET AL JACC 2017

363 patients

No significant reduction of lesion volume on MRI

DEFLECT III TRIAL

LANSKY ET AL EUROPEAN HEART JOURNAL 2015

85 patients

new ischemic brain lesions and neurologic deficits

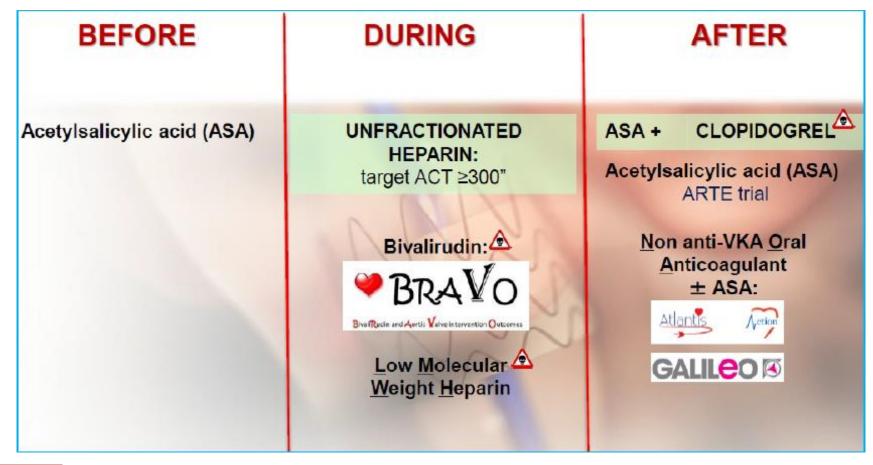
cognitive function

Cerebral Embolic Protection During TAVR

A Clinical Event Meta-Analysis

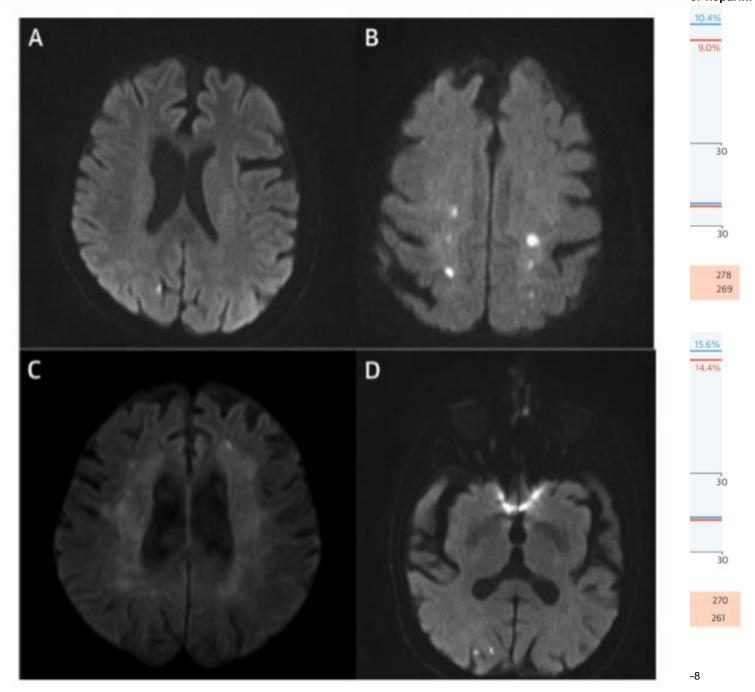
Embolic Protection Study or Subgroup Events Total		No Embolic Protection Events Total		Risk Ratio Weight M-H, Fixed, 95% CI		Risk Ratio I M-H, Fixed, 95% CI				
CLEAN-TAVI	4	50	5	50	17.7%	0.80 [0.23, 2.81]	-			
DEFLECT-III	2	46	4	39	15.4%	0.42 [0.08, 2.19]				
EMBOL-X	0	14	0	16		Not estimable				
MISTRAL-C	1	32	4	33	14.0%	0.26 [0.03, 2.18]	· · · · · · · · · · · · · · · · · · ·			
SENTINEL	16	234	11	111	52.9%	0.69 [0.33, 1.44]				
Total (95% CI)		376		249	100.0%	0.61 [0.35, 1.07]	0.35			
Total events	23		24							
Heterogeneity: Chi ²	= 1.10, df = 3 (F	9 = 0.78)	$I^2 = 0\%$							
Test for overall effec							0.1 0.2 0.5 1 2 5 10 Favors EP Favors No EP			

"In conclusion, the totality of the data suggests that use of EP during TAVR appears to be associated with a nonsignificant trend towards reduction in death or stroke."



- Expanding TAVR Clinical Indications
- **TAVI Procedure** Will cerebral embolic protection become the standard for TAVR in the future?
- TAVR Adjunct Pharmacology Customized Patient-Based Therapy.

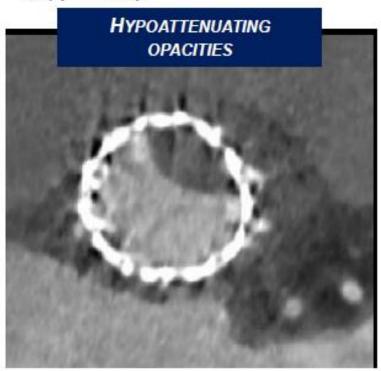
TAVR Adjunct Pharmacology Customized Patient-Based Therapy

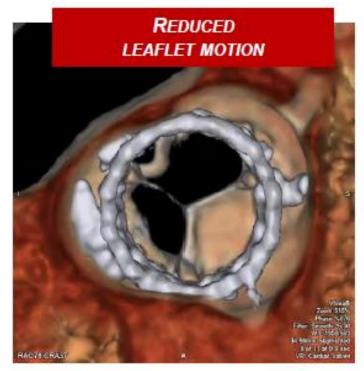

The Randomized

George D. Dangas, MD, PHI Ulrich Schäfer, MD, Nicola Stephan Windecker, MD,# Peter Boekstegers, MD, III A Anita W. Asgar, MD,††† And Hans Ulrich Hink, MD, Ilknur Lechthaler, ### Debr Christian Hengstenberg, M.

8 Did not receive bivalir 6 Did not undergo TA

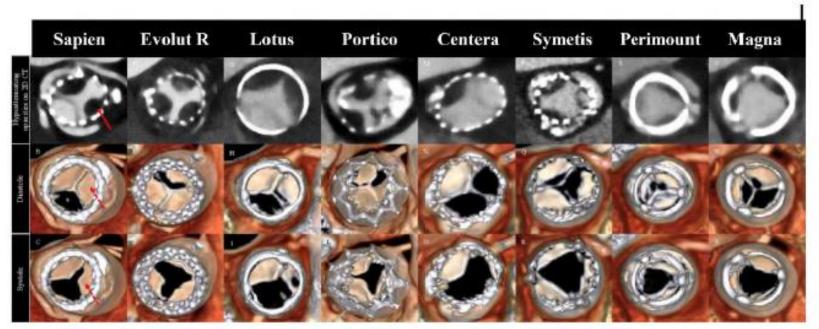
- 1 Day 30 visit <23 days 1 Lost to follow-up <23 1 Withdrew consent but allowed data use prior t
- withdrawal 2 Physician decision
- 2 Due to study criteria 2 Other reason



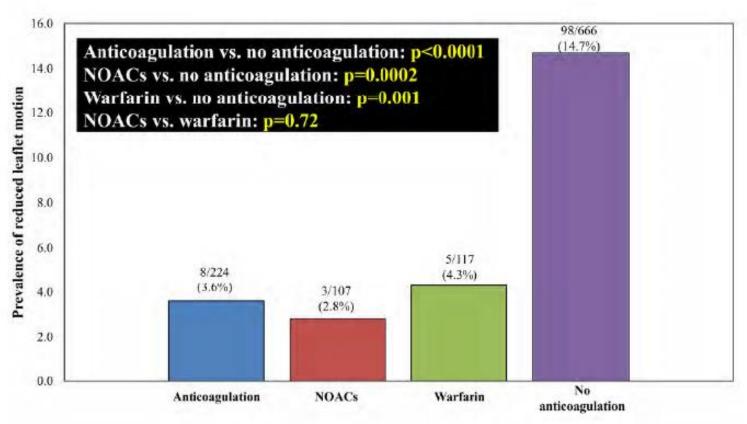


Makkar RR et al. N Engl J Med 2015

- Incidence: 17 of 132 patients (13%)
- Reduced incidence with oral anticoagulation (0% vs 29%, p=0.04)
 Restoration of leaflet motion in all 11 patients who received oral anticoagulation
- Higher incidence of stroke/TIA in patients with leaflet motion abnormality (18% vs 1%, p=0.007)



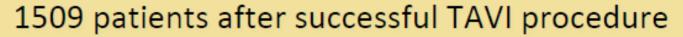
Chakravarty et al. Lancet 2017

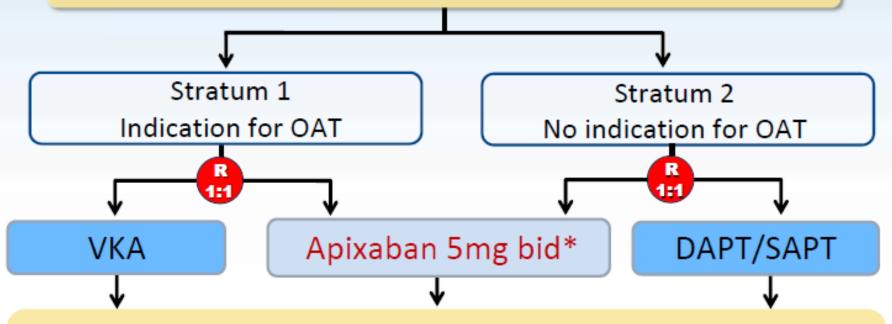

- 890 patients with interpretable CT scans were included (RESOLVE registry, n=626; SAVOR Registry, n=264)
- Incidence: 12%: 4% after SAVR and 13% after TAVR (p<0.001)

Chakravarty et al. Lancet 2017

Chakravarty et al. Lancet 2017

	Normal leaflet	motion (N=784)	Reduced leaflet	motion (N=106)		p-value
	n/N (%)	Rate per 100 person-years	n/N (%)	Rate per 100 person-years	Hazard ratio (95% CI)	
All events						
Death	34/784 (4.3%)	2.91	4/106 (3.8%)	2.66	0.96 (0.34-2.72)	0.94
Myocardial infarction	4/784 (0.5%)	0.34	1/106 (0.9%)	0.67	1.91 (0.21-17.08)	0.56
Strokes/TIAs	27/784 (3.4%)	2.36	11/106 (10.4%)	7,85	3.27 (1.62-6.59)	0.001
All strokes*	22/784 (2.8%)	1.92	6/106 (5.7%)	4.12	2.13 (0.86-5,25)	0.10
Ischemic strokes	21/784 (2.7%)	1.83	6/106 (5.7%)	4.12	2.23 (0.90-5.53)	0.08
TIAs	7/784 (0.9%)	0.60	6/106 (5.7%)	4,18	7.02 (2.35-20.91)	0.0005


TIA-Transient ischemic attack

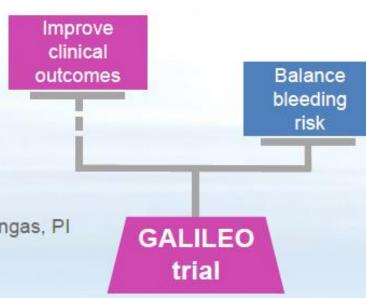


^{*} All strokes include hemorrhagic and ischemic strokes

ATLANTIS (Anti-Thrombotic Strategy to Lower All cardiovascular and Neurologic

Ischemic and Hemorrhagic Events after Trans-Aortic Valve Implantation for Aortic Stenosis)

Primary end-point is a composite of death, MI, stroke, systemic emboli, intracardiac or bioprosthesis thrombus, episode of deep vein thrombosis or pulmonary embolism, major bleedings over one year follow-up.



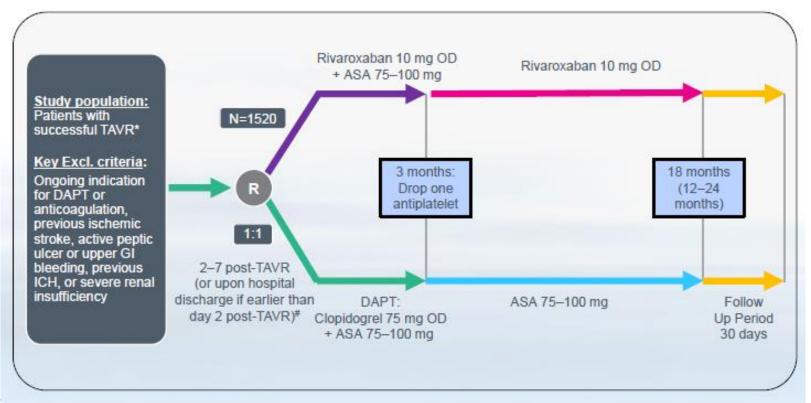
The **GALILEO Study design** trial:

Global study comparing a rivAroxaban-based antithrombotic strategy to an antipLatelet-based strategy after transcatheter aortIc vaLve rEplacement to Optimize clinical outcomes

Objective

To assess a rivaroxaban-based anticoagulation regimen following successful TAVR balancing ischaemic and bleeding outcome measures

- Stephan Windecker, PI, George Dangas, PI
- Roxana Mehran, Marco Valgimigli
- Pascal Vranckx, Robert Welsh



PI=Principal investigator; TAVR=Transcatheter acrtic valve replacement, www.ClinicalTrials.gov Identifier: NCT02556203.

GALILEO TRIAL

Design overview

"~110 sites in Europe & North America (15 countries); # Majority of patients will be on DAPT after TAVR gastric protection recommended throughout study. ASA=Acetylsalicytic acid; DAPT=Dual antiplatelet therapy; GI=Gastrointestinal; ICH=Intracranial haemorrhage; OD=Once daily; TAVR=Transcatheter acrtic valve replacement. www.ClinicalTrials.gov Identifier: NCT02556203.

Treatment after new onset of AF (NOAF)

15% of patients develop NOAF after randomisation

1 Randomised to rivaroxaban

Switch to 20 mg OD

Switch to 15 mg OD for moderate renal impairment*

2 Randomised to clopidogrel

Switch to VKA (target INR: 2-3)

- Follow-up until end of study
 - Included in primary efficacy analysis (ITT)
 - Censoring in secondary analysis

* i.e. CrCl=30-49 mL/min. CrCl=Creatinine clearance; INR=International normalised ratio; ITT=Intention to treat; NOAF=New onset atrial fibrillation; OD=Once daily; VKA=Vitamin K antagonist. Unpublished data.

- Expanding TAVR Clinical Indications
- **TAVI Procedure** Will cerebral embolic protection become the standard for TAVR in the future?
- TAVR Adjunct Pharmacology Customized Patient-Based Therapy.
- **Discharge:** The "minimalist" TAVR procedure strategy has become imbedded as a preferred treatment approach in the majority of patients!time

3M TAVR Study Design

To evaluate the efficacy, feasibility, and safety of next day discharge home in patients undergoing balloon-expandable transfemoral TAVR utilizing the Vancouver 3M Clinical Pathway

Patients undergoing elective Transfemoral TAVR

1

Considered at *increased surgical risk* by the Heart Team

Vancouver 3M Clinical Pathway (n = 411)

Meet all anatomical, functional, and peri-procedural exclusion criteria

Primary Outcomes: 1) All cause mortality or stroke at 30 days

2) The proportion of patients discharged the next day

Secondary Outcomes: 1) Readmission within 30 days

- 2) Greater than mild PAR at 30 days
- 3) New permanent pacemaker at 30 days
- 4) Major vascular complications, bleed, or repeat valve procedure at 30 days
- 5) Conversion to GA/Intubation
- 6) KCCQ and SF 12 at 2 weeks, 30 days, and 1 year
- 7) All cause mortality and stroke at 1 year

Vancouver TAVR Clinical Pathway

Minimalist Peri-Procedure Approach

Facilitated
Post-Procedure
Recovery

Criteria-Driven Discharge

PATIENT JOURNEY

Procedure Room

Cath Lab or Hybrid OR

Access and Closure

Percutaneous

Equipment

Peripheral IV
Radial artery monitoring
No urinary catheter
No PA catheter
Temporary Pacemaker
removed in procedure room

Anesthesia

Local anesthesia with no or minimal procedural sedation

Echocardiogram

TTE peri or post procedure

Monitoring

Vital Signs: Q15 x4, Q30 x2 ECG, eGFR, CBC on admission and POD1 Removal of all remaining lines < 2 hours

Facilitated Recovery

Bedrest x 4 hours Nurse-led mobilization Hydration, nutrition, elimination

Communication

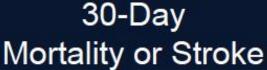
Multidisciplinary communication to maintain pathway Patient and family education Implementation of pre-procedure discharge plan

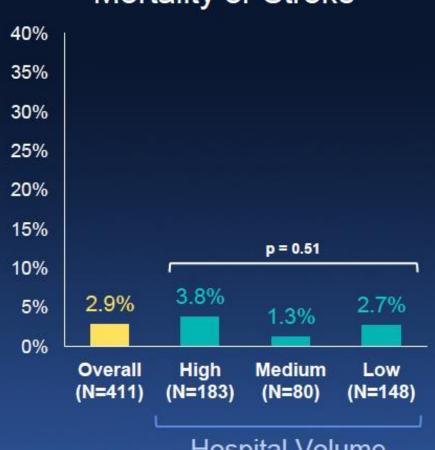
Monitoring Review of TTE

Absence of: new persistent conduction delay vascular access complications laboratory contraindications

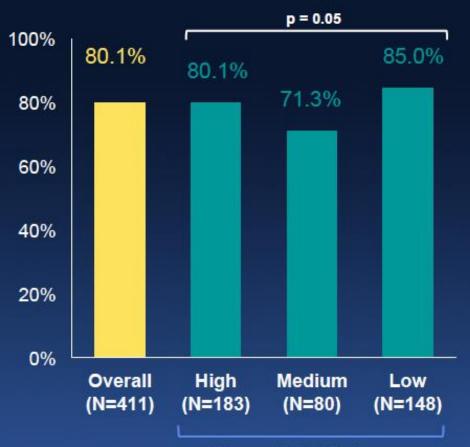
Facilitated Recovery

Return to baseline mobilization Absence of elimination issues Return to baseline hydration


Communication


Multidisciplinary agreement of safety for discharge Review discharge plan with family Review follow-up appointments

Primary Endpoint



Hospital Volume

Next Day Discharge

Hospital Volume

Discharge (%)

3M TAVR Outcomes in Perspective TAVE

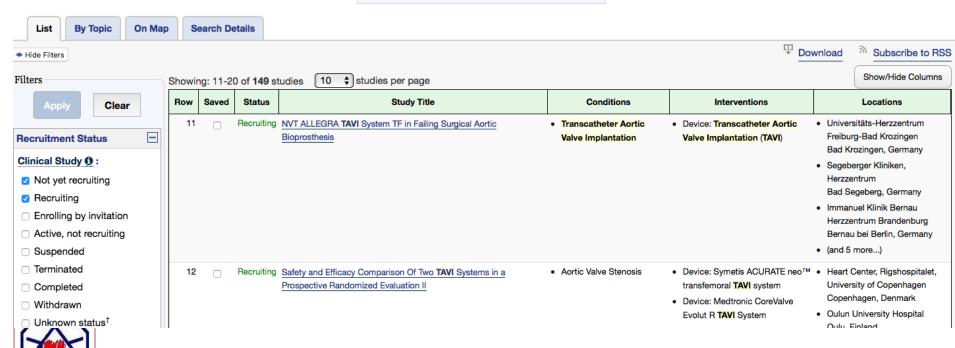
	3M TAVR (2017) N = 411	GARY TF (2014) N = 2695	STS/TVT Registry (2014) N = 12785	STS/TVT Registry (2015) Conscious Cohort N=1737	PARTNER 2A TAVR (2016) N = 1011	SAPIEN 3i (2016) N = 1077	AQUA (2017) N = 3618 (>200/yr)	Choice (2014) N=241
STS (%)	4.9		6.7		5.8	5.2		5.9
Age (yrs)	84	81	83	82	82	82	81	81
Median LOS (days)	1.0		6.2	6.0	6.0	4.0	14.0	
30-Day Mortality (%)	1.5	5.1	4.4	2.9	3.9	1.1	2.4	4.6
30-Day Stroke (%)	1.5	1.7	2.2	2.1	6.4	2.7	2.1	4.2
30-Day Cardiac Readmission (%)	5.7				6.5	4.6		4.3
30-Day New PPM (%)	5.7	25	10.5	15	8.5	10.2		27
> Mild PAR at	3.8	7.3	4.8		3.7	3.8		11.2

NIH U.S. National Library of Medicine

ClinicalTrials.gov

Find Studies ▼ About Studies ▼ Submit Studies ▼ Resources ▼ About Site ▼

+


Home > Search Results

Modify Search Start Over

149 Studies found for: TAVI | Recruiting, Not yet recruiting Studies

Also searched for Transcatheter aortic valve implantation and Transcatheter aortic valve replacement. See Search Details

Applied Filters: ☑ Recruiting ☑ Not yet recruiting

Thanks

