

Advantages of 3D full automated software in cardiac interventions

Prof. JL Zamorano

Hospital Universitario Ramón y Cajal

Fully Automated Quantification Software

onlineiase.com

A NEW TECHNOLOGY FOR AN OLD PROC

- Adaptive analytical algorithm consists in knowledge-based identification of global shape and specific adaptation of endocardial border
- High frame rate single-beat 3DE images, is accurate when compared with conventional volumetric analysis of 4-beat full-volume data sets, thus avoiding is "stich" artifacts.

Medvedofsky D et al. J Am Soc Echocardiogr. 2017;30:879-885

Model

2-Chamber

Valve and & Cardiac chambers

EACTS Echocardiographic criteria for the definition of severe valve regurgitation: an integrative approach (continued)

(Adapted from Lancellotti et al.)

	Mitral regurgitation		
Quantitative	Primary	Secondary	
EROA (mm²)	≥40	≥20	
Regurgitant volume (mL/beat)	≥60	≥30	
+ enlargement of cardiac chambers/vessels	LV, LA		

www.escardio.org/guidelines

2017 ESC/EACTS Guidelines for the Management of Valvular Heart Disease (European Heart Journal 2017 - doi:10.1093/eurheartj/ehx391)

ΕΔCTS Echocardiographic criteria for the definition of severe valve regurgitation: (an integrative approach (continued)

(Adapted from Lancellotti et al.)

www.escardio.org/guidelines

	Aortic regurgitation
Quantitative	
EROA (mm²)	≥30
Regurgitant volume (mL/beat)	≥60
+ enlargement of cardiac chambers/vessels	LV

2017 ESC/EACTS Guidelines for the Management of Valvular Heart Disease (European Heart Journal 2017 - doi:10.1093/eurheartj/ehx391)

www.escardio.org/guidelines

39

Implementation of 3D

in the Echo Lab

- Time-consuming
- Requires training in 3DE analysis
- Accuracy varies with expertise
- Reproducibility varies among individuals

Ideal Automated Analysis Program • Accurate

- Fast
- Minimal user interaction

• Reproducible

Correlations and time analysis

Correlations between HM manual 3D TTE measurements were strong (r = 0.87 to 0.96).

Automated 3DE vs CMR

Bias of manual 3 DE compared with CMR: EDV -54; ESV: -37; EF: 2; LAV: -33

Tsang W et al. JACC Cardiovasc Imaging. 2016;9:769-782

Three-dimensional echocardiographic quantification of the left-heart chambers using an automated adaptive analytics algorithm: multicentre validation study

Diego Medvedofsky¹, Victor Mor-Avi¹*, Mihaela Amzulescu², Covadonga Fernández-Golfín³, Rocio Hinojar³, Mark J. Monaghan⁴, Kyoko Otani⁵, Joseph Reiken⁴, Masaaki Takeuchi⁵, Wendy Tsang⁶, Jean-Louis Vanoverschelde², Mathivathana Indrajith⁴, Lynn Weinert¹, Jose Luis Zamorano³, and Roberto M. Lang^{1†}

¹University of Chicago, Medical Center, Chicago, Illinois, USA; ²Saint-Luc University Hospital, Brussels, Belgium; ³University Hospital Ramón y Cajal, Madrid, Spain; ⁴King's College Hospital, London, UK; ⁵University of Occupational and Environmental Health, Kitakyushu, Japan; and ⁶Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada

- **Prospective** validation in a multicentre setting
- Comparison of automated measurements made by <u>six participating</u> sites with and without corrections against reference values generated by **Core Lab**

"Banana"- shaped

180 patients were included divided into four group according to the biplane 2DE LVEF (group 1< 20%, group 2= 21–40%, group 3= 41–55%, group 4 >55%)

Clinical characteristic of the study patients

Hypertension (0 = no, 1 = yes)		Coronary artery disease (0 = no, 1 = yes)		Cardiomyopathy (0 = no, 1 = Ischemic, 2 = Idiopathic)		Valvular heart disease (0 = no, 1 = yes)		Congenital heart disease (0 = no, 1 = yes)		Arrhythmia (0 = no, 1 = yes)		
	#	%	#	%	#	%	#	%	#	%	#	%
0	86	48%	120	67%	66	37%	160	89%	176	98%	151	84%
1	94	52%	60	33%	54	30%	20	11%	4	2%	29	16%
2					60	33%						

Medvedofsky D et al. *Eur Heart J Cv Imaging*. 2017[]

Results of multicenter validation study

- Experienced readers in differents part of the world can obtain accurate and reproducible automated measurements
- Border correction was deemed necessary in the majority of patients, however, the fully automated analysis was accurate and with endocardial border editing, the accuracy improved only slightly on the average

Comparison of the Sites' HM to the Core Lab's HM (N=180)

	EDV (ml)	ESV (ml)	EF (%)	LAV (ml)
Core Lab's HeartModel values without corrections	190 ± 75	126±71	37±13	80 ± 32
Sites' HeartModel values without corrections	190 ± 75	126 ± 71	37±13	80 ± 32
Bias (% mean) ± SD	0 ± 0	0 ± 0	0 ± 0	0 ± 0
Core Lab's HeartModel values with corrections	206 ± 80	133 ± 78	39 ± 15	89 ± 35
Sites' HeartModel values with corrections	198 ± 80	127 ± 77	40 ± 15	79 ± 32
Bias (% mean) ± SD	-5 ± 7	-6±12	3 ± 17	-12 ± 8*

Medvedofsky D et al. Eur Heart J Cardiovasc Imaging. 2017]

Application of 3DE automated quantification in pre MitraCLip implant

Patients with severe MR usually show relevant remodelling of left chambers causing limitation in the evaluation of geometry and function of both left atrium and ventricle performed with bi- and tridimensional standard analysis

Patients with indication of Mitraclip (n=32) were screened

All patients underwent a complete standard echo and 3D automated quantification (Heart Model) for the evaluation of geometry and function of LV and LA

AO STENOSIS

RT3DE imaging improves the accuracy of the quantification of aortic stenosis.

- Planimetry of the aortic valve with RT3DE images showed good agreement with the standard 2D TEE technique, flow-derived methods, and cardiac catheterization data with the advantage of improved reproducibility.
- Analysis of RT3DE revealed that in half of the subjects, the LV outflow tract cross section is not round but rather elliptical.

Heart. 2007;93:801-807.

Aortic area with RT 3D echo ?

Aortic area: RT3D-Doppler hybrid approach

3D full automatic software in the evaluation of aortic stenosis severity in TAVI patients

Stroke volume and valvular area analysis are strongly recommended for a correct evaluation of AS, especially in patients with reduced flow but severe AS.

METHODS:

•88 consecutive patients undergoing TAVI (mean age 83.4 ± 6.84; 61.8% female)
•AVA was calculated by conventional CE (AVACE) and by CE calculated from the stroke volume obtained by 3D analysis (AVAHM).

•Feasibility of 3D full automatic software was of <u>73.6%</u> in our study population

Determination of LF and NF patients

Bland-Altman analysis of AVA by 2DCE or 3D automated quantification

HM derived AVA(cm2)

AVA(cm2): (2DCE+HM)/2

Unpublished data

3D full automatic software in the evaluation of aortic stenosis severity in TAVI patients.

The aim of our study was to evaluate the usefulness of a new 3D automatic quantitative software for aortic valve area (AVA) assessment compared to transesophageal echocardiography (TEE) 3D planimetry in patients undergoing TAVI.

METHODS:

- •18 consecutive patients undergoing TAVI were prospectively included
- •AVA was calculated by conventional CE (AVACE) and by CE calculated from the stroke volume obtained by 3D analysis (AVAHM).
- •3D planimetry of the aortic valve area was performed (AVA3DP) in all patients by TEE the day before or the same day of the procedure
- •Patients with very poor acoustic window and those studies that needed boundary correction were excluded.

Images for AVA calculation by CE and 3D TEE planimetry

3D- images and automated volumes calculation by Heart Model software

RESULTS:

•18 patients were included (mean age 84 ± 4 years, 20% men). A moderate significant correlation was obtained between AVA3DP and AVAHM (**r=0,53, p<0,05**) but no between AVA3DP and AVA3DP and AVACE.

•Acquisition and imaging post-processing for 3D images required less than <u>2 minutes</u> in all cases.

AVA CE	AVA 3DP	Mean difference	P value
(cm2)	(cm2)	(cm2)	
0,72	0,64	0,08	0,028
AVA HM	AVA 3DP	Mean difference	P value
(cm2)	(cm2)	(cm2)	
0,68	0,62	0,06	0,29

C. Fernandez-Golfin et al EuroEcho Imaging Leipzig 07 – 10 December 2016

56 years old male

Clinical case

Barlow's disease. MVP.

Asymptomatic severe MR.

	July 2014	January 2015	July 2015
LVEF Teich	76%	72%	
LVEF Simpson	70% ——	→ 68%	→ ???
LVEDV	155 ml	150 ml	
LVESV	45 ml	60 ml	
LA Volume	110 ml	114 ml	

January 2015

July 2015

	July 2014	January 2015
LVEF Teich	76%	72%
LVEF Simpson	70%	68%
LVEDV	155 ml	150 ml
LVESV	45 ml	60 ml
LA Volume	110 ml	114 ml

The near future ..

P

- Automated software is highly feasible and rapid, allowing the simultaneously measures of <u>LA</u> and <u>LV volumes</u>, <u>LV SV</u> and <u>LVEF</u>
- This software represent an accurate and robust alternative to conventional manual methodology and is more reproducible.
- Integration of 3DE quantification with standard measurement may implement pre-interventional screening in patients with valvular diseases (MR or AS) as well as post interventional follow up due to its lower inter and intra operator variability.

CONCLUSIONS

Quantification is a must.

- Importance in everyday clinical decision making
- Heart Model allows fast, easy, automatic and reproducible quantitation of LV and LA volumes and EF
- Measurements are not only comparable to manual but also CMR values.
- Promises to facilitate the integration of 3D-TTE based chamber quantification into clinical practice.