

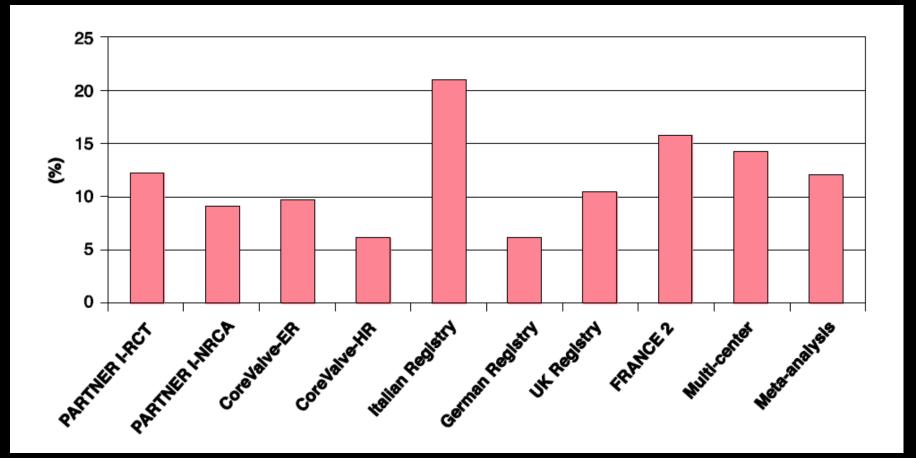
Paravalvular regurgitation: did we fix it or is this still an issue in 2016 2017?

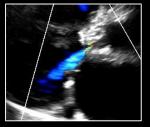
Philippe Pibarot, DVM, PhD, FACC, FESC, FASE Canada Research Chair in Valvular Heart Disease

Disclosure Philippe Pibarot

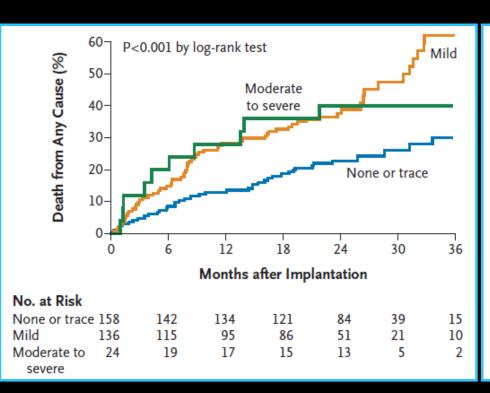
Financial relationship with industry:

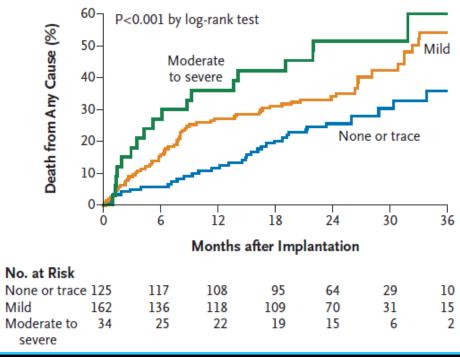
- **Edwards Lifesciences: Echo CoreLab for PARTNER 2 SAPIEN 3 Registry, PARTNER 3 and TAVR-UNLOAD**
- Medtronic: Echo CoreLab Evolut R 2.0
- V-Wave: Echo CoreLab
- Cardiac Pheonix: Echo CoreLab


Other financial disclosure:

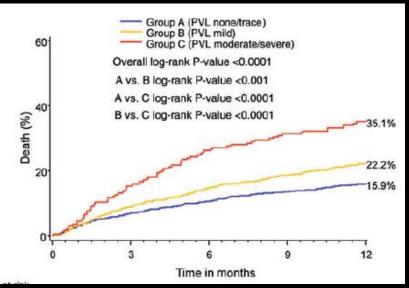

- **Research Grants from Canadian Institutes of Health**
- Research and Heart & Stroke Foundation of Quebec

Off label Use: None


Incidence of Moderate/Severe PVR in TAVR With First Generations of THVs



Impact of Paravalvular Regurgitation on 2-Year Outcomes: PARTNER 1A Trial (SAPIEN valve)


Paravalvular Regurgitation

Total (Paravalvular+Central) Regurgitation

Impact of PVR on Mortality in the PARTNER 1 Trial

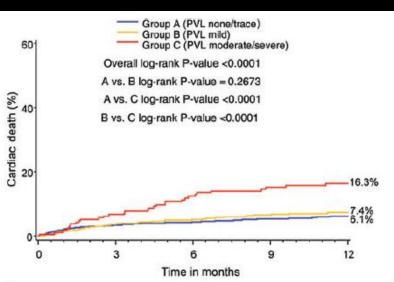
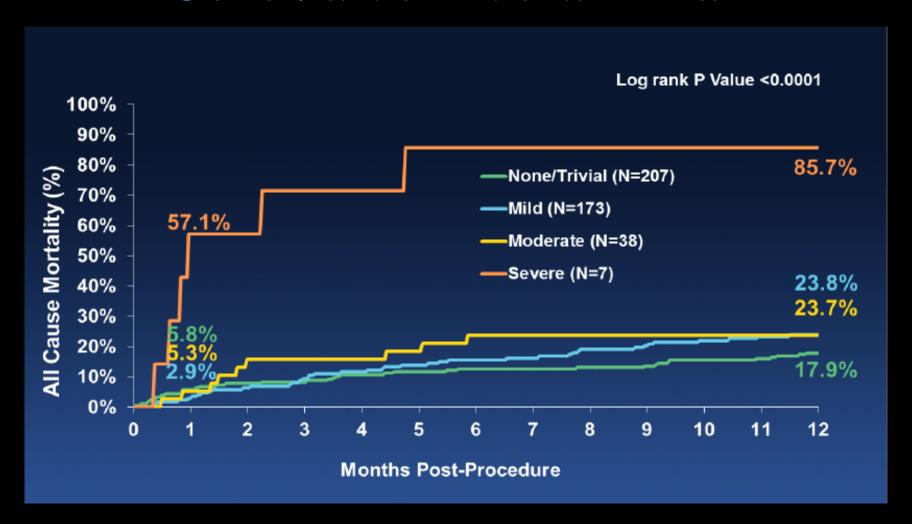



Table 4 Multivariable predictors of all-cause 1-year mortality

Multivariable analysis: baseline and procedural predictors of 1-year mortality

Variable	Hazard ratio	95% Confidence interval	P- value ^a
Major arrhythmia	1.41	1.14–1.75	0.002
TF vs. TA	0.73	0.59-0.91	0.005
AV annulus diameter (per 1 mm increase)	1.07	1.03-1.11	0.001
BMI (per 1 kg/m ² increase)	0.95	0.93-0.97	< 0.0001
Total distance walked (per 10 m increase)	0.97	0.96-0.98	< 0.0001
AV mean gradient (per 1 mmHg)	0.98	0.97-0.99	<0.0001
Paravalvular regurgitation			
None/trace	Referent	-	-
Mild	1.35	1.07-1.72	0.013
Moderate/severe	2.20	1.60-3.03	< 0.0001
Renal disease (CR \geq 2)	1.35	1.04-1.74	0.023

Impact of AR on Mortality CoreValve Pivotal Trial

Impact of Moderate / Severe Aortic Regurgitation After TAVR

Meta-Analysis and Systematic Review of Literature

Impact of Moderate-Severe AR on Mortality

Study name		Statistic	s for ea	ch study			Haz	zard ra	atio a	and 95	<u>% CI</u>	
	Hazard ratio	Lower limit	Upper limit	Z-Value	p-Value							
_emos*	4.900	1.367	17.570	2.439	0.015	1	- [T		+	+	\rightarrow
Hayashida	1.970	1.187	3.271	2.621	0.009				- 0		-	
Amabile	1.500	0.329	6.829	0.524	0.600			+	+	-	\rightarrow	- W
Sinning	3.890	2.020	7.491	4.063	0.000					\vdash	-	-
Tamburino	3.785	1.572	9.112	2.969	0.003					-	-	
Fraccaro	2.190	1.023	4.686	2.020	0.043				-	-	_	
Kodali	2.110	1.433	3.107	3.783	0.000					-		
Moat	1.490	1.002	2.215	1.971	0.049				\vdash			
Gilard	2.490	1.909	3.248	6.728	0.000						-	
AII (N=4791)	2.273	1.840	2.808	7.609	0.000	9	1	L	L		ı	10
6						0.1	0.2	0.5	1	2	5	1
							Decre	eased F	Risk	Incre	ased I	Risk

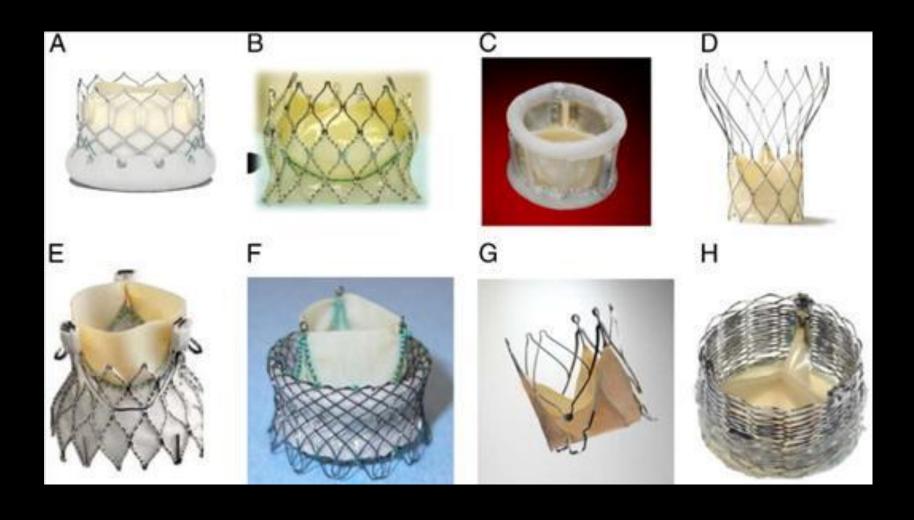
Impact of Mild AR on Mortality after TAVI: A Meta-analysis

Study name		Statist	ics for eacl	n study		Hazard ratio and 95% CI					% CI	
	Hazard ratio	Lower limit	Upper limit	Z-Value	p-Value							
Lemos	10.080	1.229	82.673	2.152	0.031	1	3	1	-		+	\rightarrow
Sinning	2.342	1.066	5.145	2.119	0.034				-	-	-	
Kodali	2.110	1.433	3.107	3.782	0.000					-		
Fraccaro	2.064	0.968	4.400	1.876	0.061				-	-		
Tamburino	0.780	0.499	1.218	-1.092	0.275			H	•			
AII (N=1620)	1.829	1.005	3.329	1.975	0.048	0.1	0.2	0.5	1	2	5	10
						I)ecrea:	sed Risi	k I	ncreas	ed Ris	k

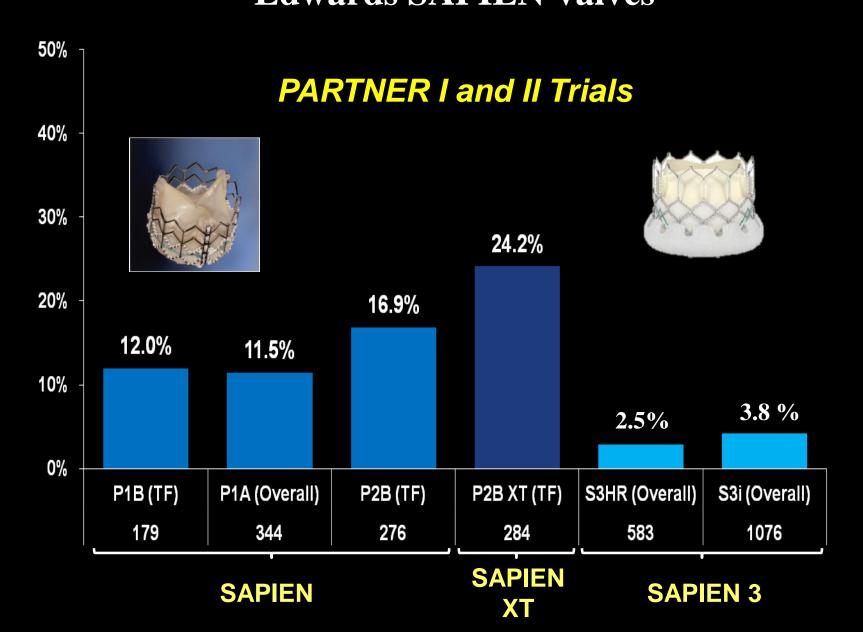
Incidence of Moderate/Severe PVR in TAVR Balloon expandable vs. Self-expending Valves

Table 1 Incidence of	of Moderate/	Severe PAR After 1	TAVR				
First Author (Ref. #)	Patients	EuroSCORE	Access Route	THV Type	PAR Rate	Assessed by	Mortality for More Than Mild PAR
Abdel-Wahab et al. (8)	690	$\textbf{20.4} \pm \textbf{13.1}$	92.4% TF, 3.5% TA	84.3% CV (Medtronic Inc., Minneapolis, Minnesota), 15.7% ES (Edwards Lifesciences Corporation, Irvine, California)	17.2%	An giography	NA
Leon et al. (1)	179	$\textbf{26.4} \pm \textbf{17.2}$	100% TF	100% ES	15.2%	Echocardiography	NA
Tamburino et al. (9)	663	$\textbf{23.0} \pm \textbf{13.7}$	90.3% TF, 9.7% TS	100% CV	21.0%	Echocardiography	NA
Smith et al. (2)	348	$\textbf{29.3} \pm \textbf{16.5}$	70.1% TF, 29.9% TA	100% ES	13.1%	Echocardiography	NA
Moat et al. (12)	870	18.5 (11.7-27.9)	68.9% TF, 26.4% TA	52.0% CV, 48.0% ES	13.6%	Angiography	NA
Sinning et al. (6)	146	$\textbf{30.2} \pm \textbf{18.0}$	91.8% TF, 8.2% TS	100% CV	15.1 %	Echocardiography, angiography, hemodynamics	30-day: 22.7%, 1-yr: 63.6%
Gilard et al. (11)	1,915*	$\textbf{21.9} \pm \textbf{14.3}$	73.9% TF, 17.7% TA	66.9% ES, 33.1% CV	16.5%	Echocardiography	NA
Gotzmann et al. (16)	198	$\textbf{22.0} \pm \textbf{16.0}$	97.5% TF, 2.5% TS	100% CV	14.1%	Echocardiography, hemodynamics	30-day: 21.0%, 1-yr: 57.0%
Vasa-Nicotera et al. (34)	122	$\textbf{22.4} \pm \textbf{13.0}$	97.5% TF, 1.7% TA	79.5% CV, 20.5% ES	1 6.4%	Echocardiography, angiography, hemodynamics	30-day: 30.0%, 1-yr: 60.0%
Hayashida et al. (15)	400	22.3 (17.1-30.3)	NA	86.8% ES, 13.2% CV	3.0%	Echocardiography	30-day: 16.7%, 1-yr: 60.0%

In 1,915/3,195 patients, PAR was assessed after the TAVR procedure.

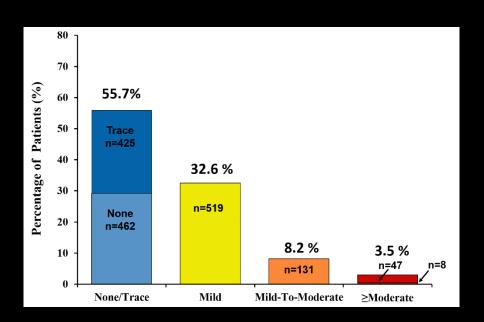

euroSCORE = European System for Cardiac Operative Risk Evaluation; CV = CoreValve; ES = Edwards SAPIEN; NA = not available; PAR = paravalvular aortic regurgitation; TA = transfermoral; THV = transfe

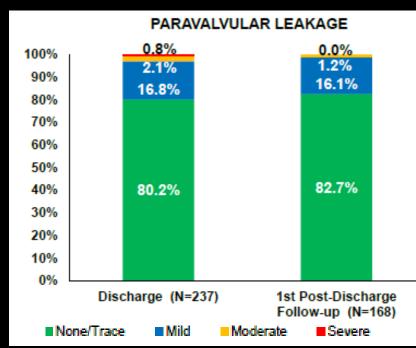
Sinning et al. JACC; 2013,62:11-20


Moderate-severe AR more common with self-exp vs. balloon-exp. valves (16% vs. 9%, p 0.005)

Athappan et al. JACC 2013;61:1585-95

New Generations of Transcatheter Heart Valves to Prevent PVR


Moderate/Severe PVR at 30 Days Edwards SAPIEN Valves



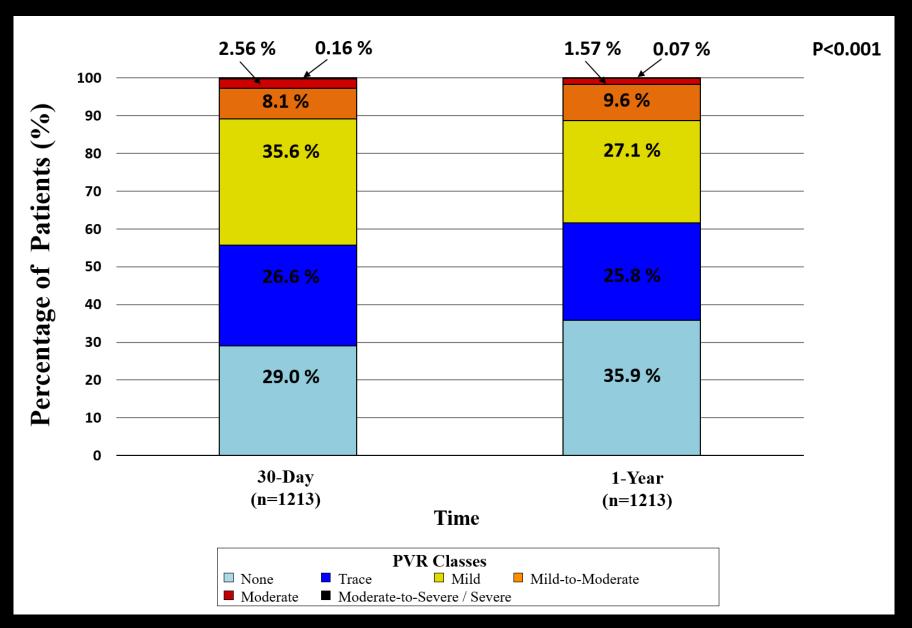
PARTNER 2 – SAPIEN 3 Registry

SOURCE 3 Registry

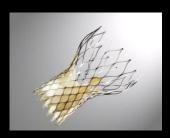
3.5 % ≥ Moderate PVR

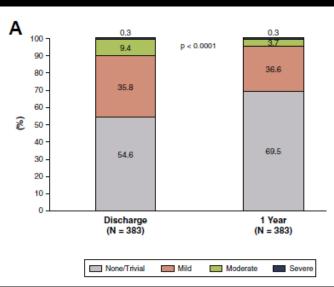
Pibarot et al. TCT 2016

2.9 % ≥ Moderate PVR


Zamorano et al. EuroPCR 2016

Paired comparison of PVR grade at 30 days vs. 1 year in the PARTNER 2 – SAPIEN 3 Registry


		PVR at 1 Year								
PVR at 30 day	None	Trace	Mild	Mild-to- Moderate	Moderate	Severe	Tota			
None	267	57	26	2	0	0	352			
Trace	112	150	56	5	0	0	323			
Mild	55	96	207	45	4	0	407			
Mild-to-Moderate	1	7	34	49	7	0	98			
Moderate	0	3	6	14	7	1	31			
Moderate-to-Severe	0	0	0	1	1	0	2			
Total	435	313	329	116	19	1	1213			

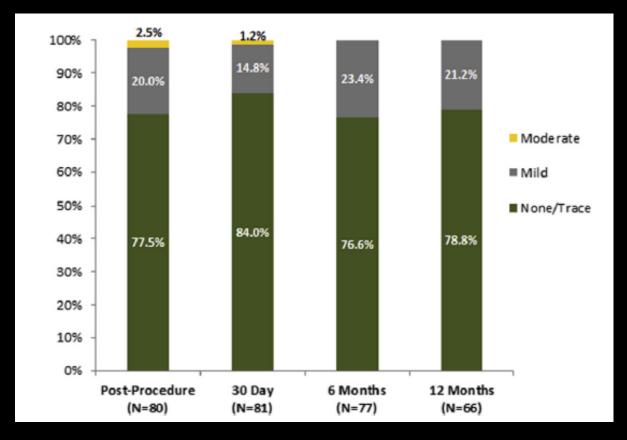

- 73% (24/33) of the patients with ≥ moderate PVR at 30 days showed a reduction in PVR severity at 1 year
- 0.9% (11/1180) of the patients with < moderate PVR at 30 days had a worsening to moderate PVR at 1 year

Paired comparison of PVR at 30 days vs.1 year

Paired comparison of PVR grade at 30 days vs. 1 year in the CoreValve Pivotal Trial

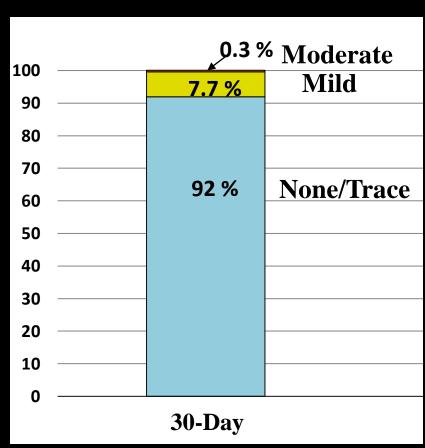
		<u>One Year</u>									
<u>Discharge</u>	None (N =123)	Trivial (N =143)	Mild (N =102)	Moderate (N =14)							
None	49	18	7	1	0						
Trivial	50	48	34	2	0						
Mild	23	66	42	6	0						
Moderate	1	11	18	5	1						
Severe	0	0	1	0	0						

Worsening in PVAR by at least 1 grade

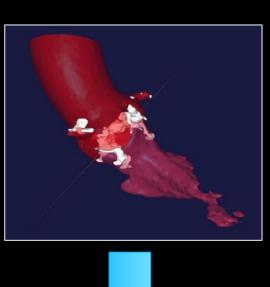

9.7 % ≥ Moderate PVR at discharge 4.0% ≥ Moderate PVR at 1-year

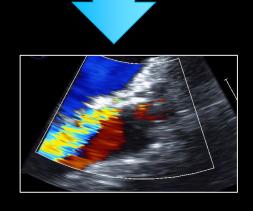
Evolut R: $3.8\% \ge \text{Moderate PVR at discharge}$

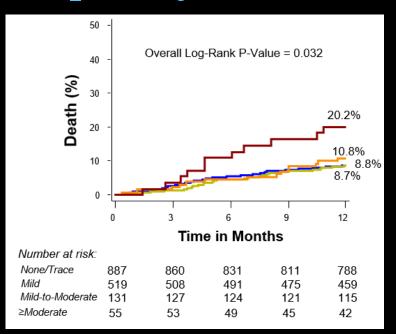
Prevalence of PVR after TAVR with the Direct Flow THV

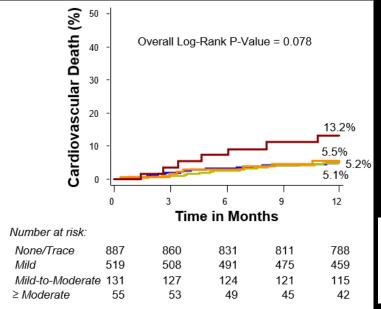


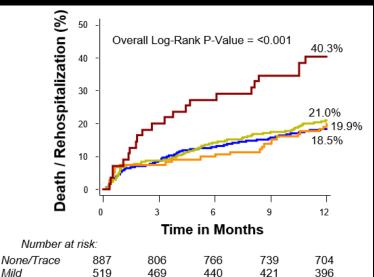
Incidence of PVR at 30 days with LOTUS Valve RESPOND Registry (n=1000 patients)






New Generations of THV


Hostile Anatomy


Impact of PVR on 1-year Outcomes – SAPIEN 3

117

40

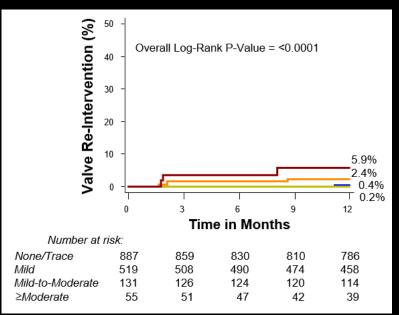
120

44

105

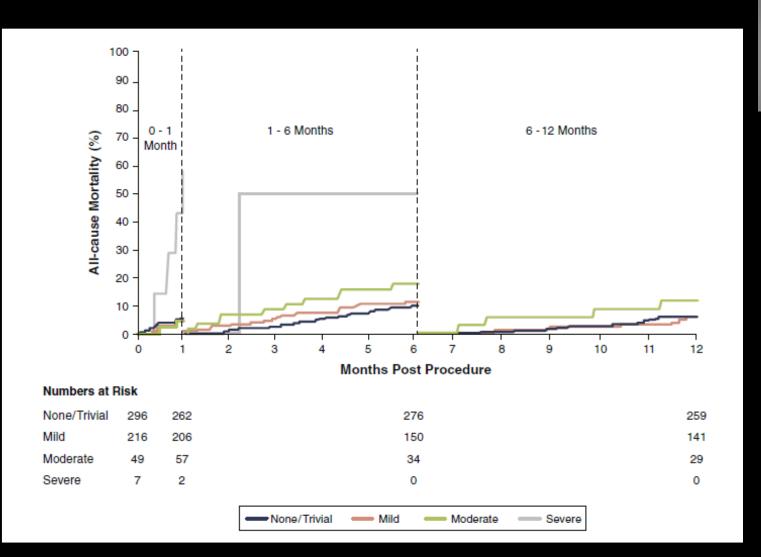
31

112


35

Mild

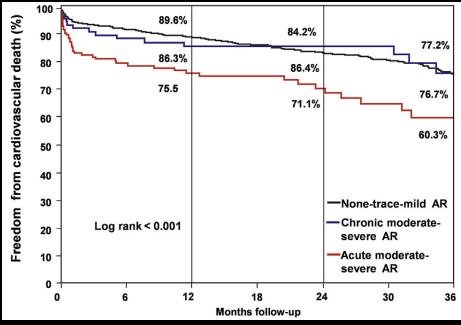
≥Moderate


Mild-to-Moderate 131

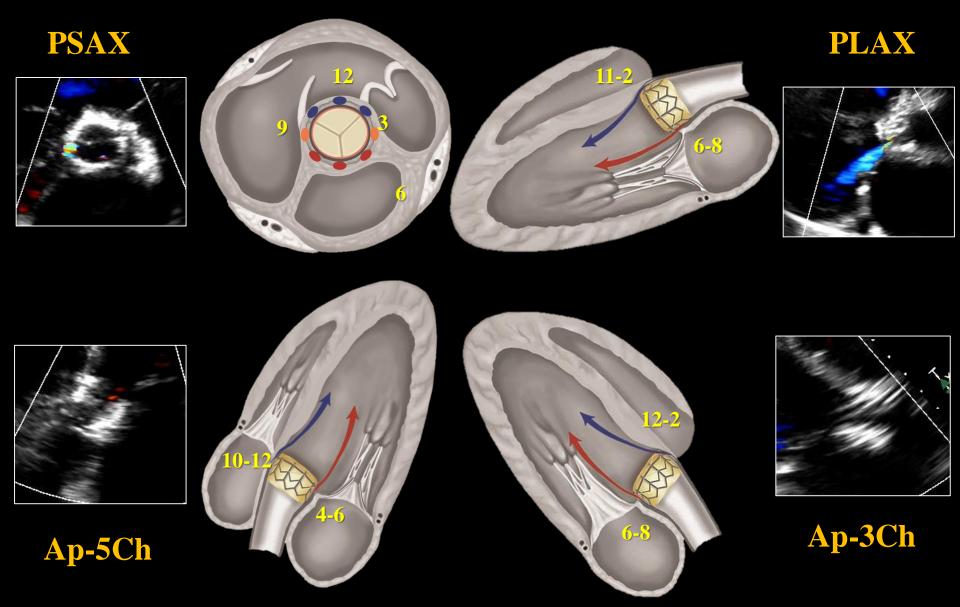
55

Pibarot et al. TCT 2016


Impact of PVR on 1 year Outcomes - CoreValve


A mild PVR may be harmful in patients with pure AS

A moderate PVR may be well tolerated by patients with pre-existing AR



Effect of Acuteness of AR on Mortality After TAVR Multicenter Study (1735 Patients)

Assessment of PVR by Echo: Multi-window Imaging is Key!

Assessment of PVR by Echo: Multi-Parameter Integrative Approach is Key!

JACC: CARDIOVASCULAR IMAGING
© 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION
PUBLISHED BY ELSEVIER INC.

VOL. 8, NO. 3, 2015 ISSN 1936-878X/\$36.00 http://dx.doi.org/10.1016/j.jcmg.2015.01.008

Assessment of Paravalvular Regurgitation Following TAVR

A Proposal of Unifying Grading Scheme

Philippe Pibarot, DVM, PhD,* Rebecca T. Hahn, MD,† Neil J. Weissman, MD,‡ Mark J. Monaghan, PhD§

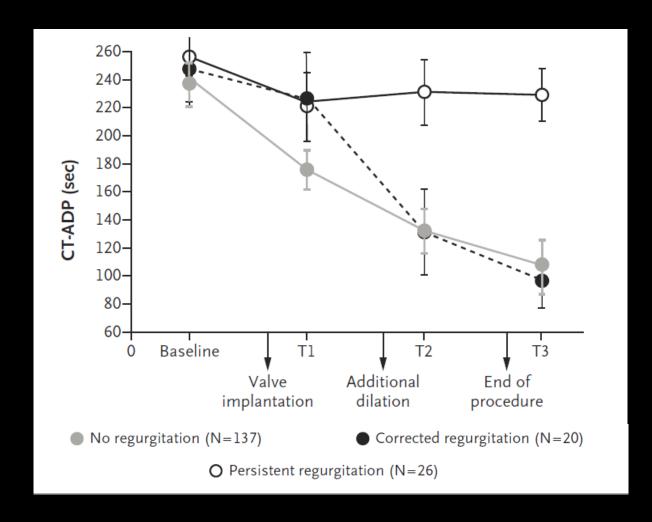
JACC: CARDIOVASCULAR IMAGING CME

3-CLASS GRADING SCHEME	TRACE	MILD		MODE	ERATE	SEVERE
4-CLASS GRADING SCHEME	1	1	2	2	3	4
UNIFYING 5-CLASS GRADING SCHEME	TRACE	MILD	MILD-TO- MODERATE	MODERATE	MODERATE- TO-SEVERE	SEVERE
Structural Parameters						
• Valve stent	Usually normal	Usually normal	Normal/	Normal/	Usually	Usually
Doppler parameters (qualitative or semi-quantitative)			abnormal	abnormal	abnormal	abnormal†
• Jet features						
Extensive/wide jet origin	Absent	Absent	Absent	Present	Present	Present
Multiple jets	Possible	Possible	Often present	Often present	Usually present	Usually present
Jet path visible along the stent	Absent	Absent	Possible	Often present	Usually present	Present
Proximal Flow convergence visible	Absent	Absent	Absent	Possible	Often present	Often present
a Taganidah adiga adiain	Name	NI	I	T	Laws	T
 Jet width at its origin (%LVOT diameter): color Doppler 	Narrow (<5)	Narrow (5-15)	Intermediate (15-30)	Intermediate (30-45)	Large (45-60)	Large (>60)
 Jet deceleration rate (PHT, ms): CW Doppler 	Slow (>500)	Slow (>500)	Slow (>500)	Variable (200-500)	Variable (200-500)	Steep (<200)
 Diastolic flow reversal in the descending aorta: PW Doppler 	Absent	Absent or brief early diastolic	Intermediate	Intermediate	Holodiastolic (end-diast. vel.>20 cm/s)	Holodiastolic (end-diast. vel.>25 cm/s)
• Circumferential extent of PVR (%) color Doppler	<10	<10	10-20	20-30	>30	>30
Doppler parameters (quantitative)						
• Regurgitant fraction (%)	<15	<15	15-30	30-40	40-50	>50

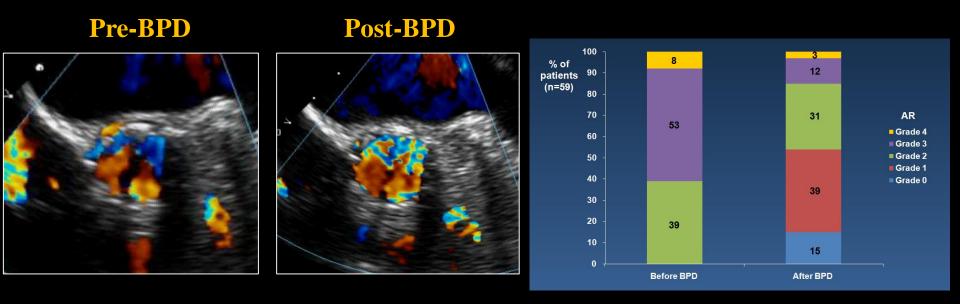
Pibarot et al. JACC CV Imaging; 8:340-360, 2015

Assessment of PVR by CMR

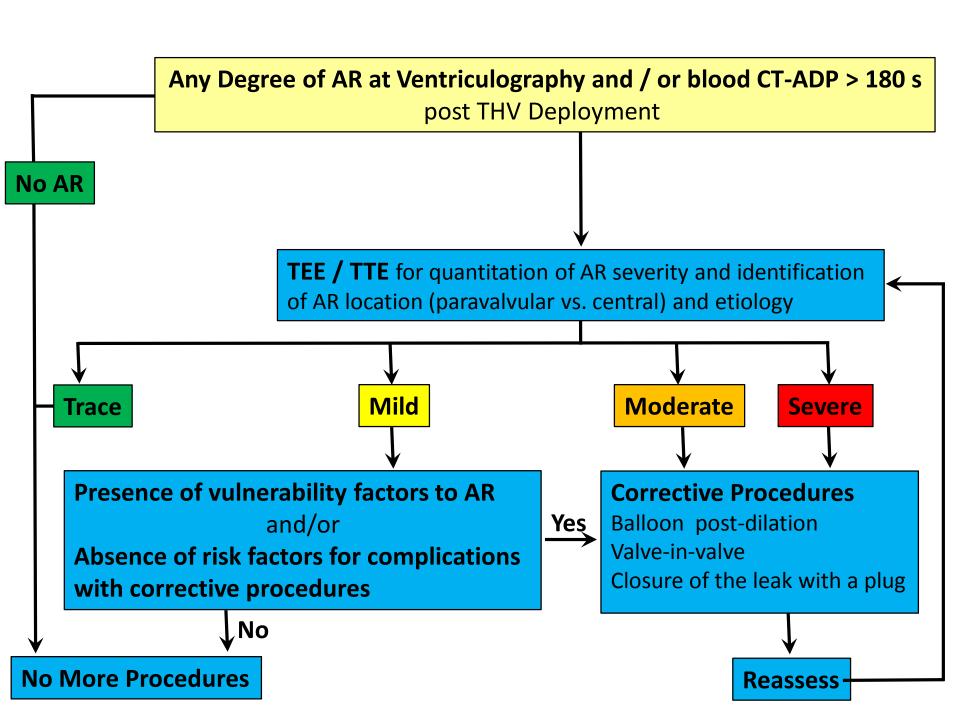
Ribeiro et al. Heart 2016


Evolution of TAVR in 2017

- ► Less and less invasive TAVR: majority of cases performed under conscious sedation (≥70%) with transfemoral approach (≥90%)
- **Consequences of this evolution:**
 - > Less and less comprehensive imaging:
 - > No TEE
 - > Ventriculography only
 - > Suboptimal TTE
 - > Risk of underdetection of PVR at the time of procedure


Usefulness of Von Willebrand Factor (or CT-ADP) for Detection of Significant PVR at the time of Procedure

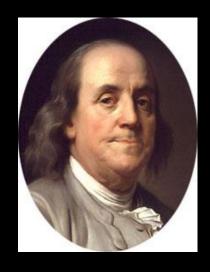
PFA Analyzer



Impact of Balloon Post-dilation on PVR And Outcomes

BPD: 2.5-fold increase in the risk of early cerebrovascular events

Nombela-Franco et al. JACC CV Intervention 2012 Nombela-Franco et al. Circulation 2012



Conclusions

- > PVR is less and less an issue over time... but it is still an issue in 2017
- ➤ Moderate/severe PVR:
 - > 2-4% of patients with new generations of THVs
 - > 2-2.5 fold increase in the risk of mortality
 - > Better tolerated in patients with pre-existing native AR
- > Mild PVR:
 - > 10-40% of patients with new generations of THVs
 - ➤ Impact on mortality if underestimated or if it occurs in a patient with no pre-existing AR and/or restrictive LV physiology

Take Home Message

- > Continue efforts for prevention of PVR
 - > Optimize valve sizing and positioning
 - Optimize detection of PVR at the time of procedure: imaging / hemodymic / blood biomarkers
 - > Rationale utilization of corrective procedures in light of: severity of PVR vs. vulnerability factors to AR vs. risk for procedure complications

By failing to prepare, you are preparing to fail"

Benjamin Franklin