

EuroValve March 10-11, 2016

Asymptomatic MR: Neuro-Hormones

Dr Julien Magne, PhD CHU Limoges, France

Université de Limoges

BNP Molecular Forms and Processing

Brain Natriuretic Peptide: Sudoh et al, Nature, 1988

BNP and its inactive amino terminal portion are neurohormones released by the ventricles in response to increased LV wall stress

BNP Release Activation

Characteristics of an 'ideal' biomarker

Specific

High myocardium/serum ratio Not present in non-cardiac tissue, even pathologically

Sensitive

Zero baseline

Marker of 'early,' reversible cardiotoxicity

Immediate release with injury 💐

Predictive Long half-life in blood Release proportionate to extent of injury 🖏

Robust Rapid, simple, and accurate [∞]

Non-invasive / accessible / unexpensive ^ℵ

The Place of BNP in current VHD Guidelines

ESC 2012: General comments on biomarkers in MR

"B-type natriuretic peptide (BNP) serum level has been shown to be related to functional class and prognosis, particularly in AS and MR."

"Low-plasma BNP has a high negative predictive value and may be helpful for the follow-up of asymptomatic patients"

ACC/AHA 2014:

"Although the data are preliminary, the finding of a rising B-type natriuretic peptide could be helpful as another factor in deciding the optimal timing of mitral surgery."

Vahanian et al. EHJ, 2012 Nishimura, Otto et al. JACC, 2014

BNP level in Mitral Regurgitation

BNP level is not related to MR itself but to the atrial and

ventricular consequences of MR

124 patients with primary MR; BNP vs. MR severity (ERO): r=0.17, p=0.06

BNP level in Mitral Regurgitation

Determinants of BNP level

Impact of BNP level on survival

			100 -						95 + 5
Variable	BNP, Multivariate Analysis (P)	(%)	90 - 80 -			"		٦ ا	
LA volume	0.0001	rvival	70 -		P=0.0	3		·····	72 ± 10
AF	0.006	Su	10			21 ng/ml			
ESVI	0.02		60 -		BNP S	31 pg/ml	-		
NYHA class	0.01				Ditt 2	or pg/m			
Sex	0.01		50 -	<u> </u>			,		
Age	0.0003			0	1	2 Ye	3 ars	4	5
Age	0.0003					Ye	ars		
	0 0005		(0	1	2	3	4	5
etaint et al	. Circ, 2005		50 -						

BNP level and Exercise Parameters

6

4

2

0 -

1.00

(2.7)

1.50

(4.5)

symptoms, moderate to severe MR, LVEF>60%

Kerr et al. EHJ, 2008

Ln brain natriuretic peptide

2.50

(12.2)

3.00

(20.1)

3.50

(33.1)

4.00

(54.6)

2.00

(7.4)

LV Longitudinal Function and BNP Level

ORIGINAL ARTICLE

Prognostic importance of brain natriuretic peptide and **Bi-centric study**, n=135 asymptomatic MR left ventricular longitudinal function in asymptomatic degenerative mitral regurgitation

Julien Magne,¹ Haifa Mahjoub,² Luc A Pierard,¹ Kim O'Connor,^{1,2} Charles Pirlet,¹ Philippe Pibarot,² Patrizio Lancellotti¹

(moderate & severe) with no LV dysfunction/dilatation

Magne et al. Heart 2012

Determinants of BNP Level

	Log BN	P		BNP ≥40 pg/ml			
Variables	β	SE	p Value	OR	95% CI	p Value	
Age, per years	0.01	0.01	0.10	1.01	0.97 to 1.06	0.56	
Male gender*	0.03	0.12	0.82	2.17	0.65 to 7.2	0.20	
iLVES diameter, per mm/m ²	0.03	0.02	0.12	1.01	0.86 to 1.8	0.92	
E/Ea ratio	0.20	0.13	0.12	1.22	0.44 to 3.35	0.70	
Deceleration time, per ms	0.01	0.002	0.003	1.02	1.0 to 1.03	0.043	
iLA volume, per ml/m ²	0.01	0.004	0.008	1.05	1.00 to 1.09	0.034	
SPAP, per mm Hg	0.01	0.01	0.12	1.01	0.95 to 1.08	0.73	
Global longitudinal strain, per %	0.13	0.020	<0.0001	1.33	1.12 to 1.59	0.0010	

LV diastolic function + Disease chronicity + Longitudinal function + ... = BNP level

BNP level in Asymptomatic MR

	Derivation Set			Validation Set			
	BNP <105 pg/ml (n = 130)	BNP ≥105 pg/ml (n = 37)	p Value	BNP <105 pg/ml (n = 75)	BNP ≥105 pg/ml (n = 27)	p Value	
Age (yrs)	61 ± 6	66 ± 8	0.07	62 ± 5	65 ± 7	0.09	
Male	77 (59)	24 (64)	0.38	47 (63)	18 (65)	0.94	
Atrial fibrillation	12 (9)	5 (13)	0.17	5 (6.6)	3 (7.4)	0.77	
Hypertension	20 (15)	8 (21)	0.22	9 (12)	3 (10)	0.82	
Systolic arterial pressure (mm Hg)	$\textbf{139} \pm \textbf{22} \textbf{(93-170)}$	135 \pm 18 (90–155)	0.27	137 \pm 28 (91–160)	$136 \pm 21 (90 - 150)$	0.77	
Heart rate (beats/min)	$\textbf{76} \pm \textbf{10} \ \textbf{(62-98)}$	69 ± 11 (55-89)	0.15	75 \pm 10 (60–101)	70 ± 12 (55-94)	0.45	
NFL, n (%)	2 (1.5)	4 (10)	0.001	1 (1.3)	1 (3.7)	0.02	
Exercise capacity (METs)	9.5 (8.5-11)	9.0 (8.0-12)	0.39	9.0 (8.0-14)	8.5 (7.5-11)	0.45	
Ejection fraction (%)	68 (65-72)	65 (63-68)	0.04	68 (65-70)	66 (63-69)	0.04	
End-diastolic diameter/BSA (mm/m ²)	33 (25-38)	40 (29-46)	0.08	32 (24-37)	39 (31-45)	0.09	
End-systolic diameter/BSA (mm/m ²)	18 (14-23)	24 (19-29)	0.001	18 (14-22)	25 (21-30)	0.01	
Regurgitant volume (ml/beat)	65 (63-70)	76 (66-84)	0.01	66 (62-71)	76 (68-86)	0.01	
Regurgitant fraction (%)	49 (46-55)	58 (49-64)	0.01	49 (45-57)	60 (52-67)	0.01	
EROA (mm ²)	53 (46-61)	65 (47-74)	0.0001	46 (44-57)	67 (49-81)	0.001	
AV/BSA (cm ³ /m ²)	65 (42-73)	76 (49-84)	0.03	64 (40-69)	77 (48-82)	0.02	
Oulmonary artery systolic pressure (mm Hg)	24 (18-30)	32 (24-38)	0.04	25 (15-29)	35 (22-39)	0.037	
oulmonary artery systolic pressure (mm Hg)	24 (18-30)	32 (24-38)	0.04	25 (15-29)	35 (22-39)	0.037	
AV/BSA (cm ³ /m ²)	65 (42-73)	76 (49-84)	0.03	64 (40-69)	77 (48-82)	0.02	
FKOV (USU.)	63 (46-61)	00 (41-14)	0.0001	46 (44-67)	67 (43-81)	0.001	

⇒BNP is a good marker of advanced stage of the disease

(read /m) amnor turng maar)

Pizarro et al. JACC, 2009

BNP level in Asymptomatic MR

Multivariate predictor of combined end-point

	OR (95% CI)	p Value
BNP ≥105 pg/ml	4.6 (2.7-11.6)	0.0001
End-systolic diameter/BSA $>$ 22 mm/m ²	3.4 (1.6-10.7)	0.01
EROA >55 mm ²	4.2 (2.1–11.4)	0.001
EROA > 55 mm ²	4.2 (2.1-11.4)	0.001

Pizarro et al. JACC, 2009

BNP level in Asymptomatic MR

BNP and Impact on Outcome

HR=3.5, 95%CI: 1.7-7.2, p=0.001

BNP and Impact on Outcome

Exercise BNP and Impact on Outcome

BNP level significantly increase during exercise

Exercise BNP is determined by ex. LV longitudinal function

Magne et al. Eur J HF, 2012

Exercise BNP and Impact on Outcome

Exercise BNP level and outcome

Incremental prognostic value of exercise BNP

Take Home Messages!

- Despite lack of recommendation, BNP level is of high clinical and prognostic importance in asymptomatic patients with MR
- LV diastolic dysfunction, LA, Longitudinal function...are determinants of BNP level
- Exercise BNP level may have incremental prognostic value
- In asymptomatic patients with severe MR, no LV dysfunction/dilatation, and high BNP level...follow-up should be shorten/surgery could be discussed...

EuroEcho Imaging 2016

7-10 December - Leipzig, Germany

Main themes Imaging in arrhythmias & Aortic valve diseases

www.escenfill.org/EACVI

Visit the Leipzig Convention Bureau stand C10

Abstract submission	1 April - 31 May
Early registration	18 April - 30 September
Late registration	1 - 31 October
Last minute registration	1 - 30 November

Special advantages for EACVI members (abstract deadline extension, reduced fees and lot more...). Not yet an EACVI member ? Join us on **www.escardio.org/EACVI**

