

EuroValve March 10-11, 2016

The current gold standard in primary MV repair importance of patient selection

Alessandro Parolari MD PhD

Associate Professor of Cardiac Surgery Dept. of Biomedical Sciences for Health University of Milano Deputy Head, Cardiac Surgery Translational Research Unit Policlinico San Donato IRCCS

www.eurovalvecongress.com

EuroValve March 10-11, 2016

Faculty disclosure

Alessandro Parolari MD PhD

I have **no financial relationships** to disclose.

www.eurovalvecongress.com

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia

The current gold standard in primary MV repair:importance of patient selection

Alessandro Parolari MD PhD

Associate Professor of Cardiac Surgery Dept. of Biomedical Sciences for Health University of Milano Deputy Head, Cardiac Surgery Translational Research Unit Policlinico San Donato IRCCS

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia

http://www.istat.it/it/files/2014/05/cap4.pdf

THE NEXT FOUR DECADES The Older Population in the United States: 2010 to 2050

Issued May 2010

Population Estimates and Projections

Figure 1.

Age and Sex Structure of the Population for the United States: 2010, 2030, and 2050

UNIVERSITÀ DEGLI STUDI DI MILANO

FACOLTÀ DI MEDICINA E CHIRURGIA

3

Burden of valvular heart diseases: a population-based study

Vuyisile T Nkomo, Julius M Gardin, Thomas N Skelton, John S Gottdiener, Christopher G Scott, Maurice Enriquez-Sarano

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di Medicina e chirurgia

www.thelancet.com Vol 368 September 16, 2006

Advantages of mitral valve repair vs mitral valve replacement

- Improved freedom from endocarditis, thromboembolism, and from anticoagulant-related hemorrhage
- *improved survival*.

For these reasons, *valve repair is preferred* to valve replacement in patients with *degenerative mitral valve disease*.

POLITCI TNTCO SAN DONATO

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia Gillinov AM. Durability of mitral valve repair for degenerative disease. J Thorac Cardiovasc Surg. 1998;116:734-43. 2. Suri RM. Survival advantage and improved durability of mitral repair for leaflet prolapse subsets in the current era. Ann Thorac Surg. 2006;82: 819-26.

Valve repair versus valve replacement for degenerative mitral valve disease

A. Marc Gillinov, MD,^a Eugene H. Blackstone, MD,^{a,b} Edward R. Nowicki, MD,^a Worawong Slisatkorn, MD,^a

Factors associated with type of mitral valve surgery

Factors	Estimate ± SE	P	Reliability (%)*	Ta		-
Associated with replacement				P	1 Port	100
Older age	1.26 ± 0.111	<.0001	100		T VA	Contraction of the local division of the loc
Anterior or bileaflet prolapse	2.1 ± 0.178	<.0001	82			
MV calcification	1.09 ± 0.173	<.0001	90	A CAR		
Surgeon A	2.2 ± 0.56	<.0001	58	10-001		$\langle \rangle \rangle$
Surgeon B	2.1 ± 0.38	<.0001	83			
Surgeon C	1.54 ± 0.55	.005	54			"No
Associated with repair				(TA)	MAR I	11 -
More recent date of operation	-0.033 ± 0.0162	204	65	V and	Cl X	(All
Surgeon D	-1.44 ± 0.179	<.0001	99			and a
MV, Mitral valve; SE, standard er	rror. *Percent of	occurren	ces in 500			
bootstrap models.						

J Thorac Cardiovasc Surg 2008;135:885-93

Valve repair versus valve replacement for degenerative mitral valve disease

I.R.C.C.S. POLICLINICO SAN DONATO

A. Marc Gillinov, MD,^a Eugene H. Blackstone, MD,^{a,b} Edward R. Nowicki, MD,^a Worawong Slisatkorn, MD,^a

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di Medicina e chirurgia

J Thorac Cardiovasc Surg 2008;135:885-93

Unadjusted survival after mitral valve repair (blue) or replacement (red) compared with age and sex-matched US population (dot-dash curves).

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia

Valve repair versus valve replacement for degenerative mitral valve disease

Survival in propensity-matched patients having repair (blue) or replacement (red) compared with unmatched patients having repair (orange) or replacement (black).

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia

Valve repair versus valve replacement for degenerative mitral valve disease

Survival in propensity-matched patients having repair (blue) or replacement (red) compared with age-sexmatched US population (green).

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia

Valve repair versus valve replacement for degenerative mitral valve disease

Reoperation in propensity-matched patients after mitral valve repair (blue), replacement with bioprosthetic valve (red), or replacement with mechanical valve (black).

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia

Valve repair versus valve replacement for degenerative mitral valve disease

- Over the years MV repair has progressively taken over with respect to MV replacement
- Survival, however, seems to be similar once you adjust for clinical features (balancing scores)
- Late reoperation is still an issue both in MV repair and in MV replacement with bioprostheses

VS

Two different issues:

- 1. What is the gold standard in primary MV repair
- 2. What is the role of patient selection

The progressively evolving field of MV repair

- Minimally invasive surgery
 - ministernotomy
 - minithoracothomy
- Robotic surgery

- Transcatheter transfemoral approaches
 - Mitraclip & co.
 - Transcatheter valves
- Transcathether transapical approaches

The progressively evolving field of MV repair

Minimally invasive surgery has revolutionized many facets of surgical practice over the past few decades, including a range of *procedures in cardiac surgery*.

Traditional Open-Heart Surgery

Minimally Invasive Valve Surgery

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di Medicina e chirurgia Ann Cardiothorac Surg. 2013 Nov; 2(6): 693–703. 10.3978/j.issn.2225-319X.2013.11.08 The importance of patient selection: how to choose among all these options?

- Minimally invasive surgery
 - ministernotomy
 - minithoracothomy
- Robotic surgery
- Transcatheter transfemoral approaches
 - Mitraclip & co.
 - Transcatheter valves
- Transcatheter transapical approaches

Minimally invasive mitral valve surgery: a systematic review and meta-analysis

Paul Modi, Ansar Hassan, Walter Randolph Chitwood Jr.*

Table 2

Meta-analysis of outcomes

Outcome	No. of patients	No. of studies	OR/WMD (95% CI)	p value	Heterogeneity, χ^2	χ^2 , p value
Mortality	1641	6	0.46 (0.15 to 1.42)	0.18	1.82	0.77
Stroke	1801	6	0.66 (0.23 to 1.93)	0.45	6.77	0.24
CPB	871	8	25.81 (13.13 to 38.50)	<0.0001	27.05	0.0003
XC	671	7	20.91 (8.79 to 33.04)	0.0007	24.98	0.0003
Re-op for bleeding	1553	5	0.56 (0.35 to 0.90)	0.02	0.63	0.96
New onset AF	539	4	0.86 (0.59 to 1.27)	0.45	2.25	0.52
ICU stay	309	4	-0.36 (-0.80 to 0.08)	0.1	3.26	0.35
Hospital stay	350	5	-0.73 (-1.52 to 0.05)	0.07	1.75	0.78

Review: Comparing MIS to traditional MV surgery

03 Mortality Comparison:

Outcome: 01 Montality

Study or sub-category	MS	Sternotomy n/N	OR (random) 95% Cl	Weight %	OR (random) 95% Cl
Dogan et al. Gaudiani et al. Orossi et al. Mhaljevic et al. Ryan et al. (MVP) Ryan et al. (MVR)	0/20 2/205 0/100 1/474 1/92 0/25	0/20 5/151 1/100 1/337 0/92 1/25 8 0/0015		46.65 12.36 16.56 12.35 12.09	Not estimable 0.29 [0.06, 1.50] 0.33 [0.01, 8.20] 0.71 [0.04, 11.40] 3.03 [0.12, 75.42] 0.32 [0.01, 8.25]
Total (95% CI) Total events: 4 (MIS), 8 (Six Test for heterogeneity: Chi ² Test for overall effect: Z =	916 ernotomy) = 1.82, df = 4 (P = 0.77), P = 09 1.35 (P = 0.18)	725		100.00	0.46 [0.15, 1.42]
	,		0.1 0.2 0.5 1 2 Fevours MS Fevours ste	5 10 Vinotomy	

UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI MEDICINA E CHIRURGIA

European Journal of Cardio-thoracic Surgery 34 (2008) 943-952

Minimally Invasive Versus Conventional Open Mitral Valve Surgery

A Meta-Analysis and Systematic Review

Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Random, 95% CI	M-H, Random, 95% Cl
4.2.1 RCTs							
Dogan 2005	0	20	0	20		Not estimable	
ELEIW 2000	0	50	0	50		Not estimable	
Subtotal (95% CI)		70		70		Not estimable	
Total events	0		0				
Heterogeneity: Not a	plicable						
Test for overall effect	Not appli	icable					
1.2.2 Propensity con	narison						
Gammia 2010	56	1222	47	1222	67.2%	1 17 (0 70 1 72)	
MT.2010	35	4322		4322	07.3%	Not actimable	T
Subtotal (95% Ch	U	4583	.0	4436	67.3%	1.17 I0.79, 1.721	L
Tatal augusts		4303	47	44.50	01.074	1111 [01131 1112]	
Total events	-14 miles		4/				
meterogeneny: Not a	7 - 0.00	0-0-	20				ODIX
lest for overall effect	Z = 0.80	(P=0.4	3)				
4.2.3 Cohort							
Bolotin 2004	2	38	2	33	2.8%	0.87 (0.13, 5.83)	
Burfeind 2002	ñ	60	21	155	1.3%	0.06.00.0.0.971	
Chibwood 1997	1	31		100	1.9%	1 61 10 15 17 19	
Folliquet 2006		25	â	26	1.0.0	Not octimable	
Collower 2000	0	712	2	222	8.0%	0.04.10.26.2.441	
Garcak 2005	6	105	7	110	0.0%	0.04 [0.20, 0.44]	
Olever 1000	0	105		20	3.0%	0.30 [0.31, 2.36]	
Glower 1998	0	100		100	1.0%	0.32 [0.01, 7.38]	
Grossi Zuura	U	100	1	100	1.0%	0.33 [0.01, 8.09]	
Karagoz 1999a	U	54	U	29		Notestimable	
Raanani 2010	0	61	0	82		Not estimable	
Ruttmann 2006	0	41	0	64	11	Not estimable	
Ryan 2010 Rpl	0	43	5	43	1.2%	0.09 [0.01, 1.59]	
Ryan 2010 Rpr	1	177	0	177	1.0%	3.00 [0.12, 73.15]	
Srivastava 1998	3	52	3	52	4.2%	1.00 [0.21, 4.73]	
Suri 2009	2	350	0	365	1.1%	5.21 [0.25, 108.21]	
Wang 2009	1	192	1	203	1.3%	1.06 [0.07, 16.79]	
Woo 2006	0	25	1	39	1.0%	0.51 [0.02, 12.12]	
Subtotal (95% CI)		2087		1820	32.7%	0.80 [0.46, 1.39]	
Total events	25		47				
Heterogeneity: Tau* =	0.00; Ch	i* = 9.9	5, df = 12	(P = 0.	62); I [#] = 0 ⁴	%	
Test for overall effect	Z = 0.80	(P = 0.4	(2)				
Total (95% CI)		6740		6326	100.0%	1.03 [0.75, 1.42]	\bullet Γ Γ Γ Γ Γ Γ Γ
Total events	80		94				
Heterogeneity Tau*:	0.00 Ch	i ² = 10 :	86 df = 1	3(P=0)	62)·F=	1%	NOT
Test for overall effect	7 = 0.19	P = 0.9	5	- ((0.005 0.1 1 10 200
Test for subgroup dif	ferences.	Not an	nlicable				Favours Mini-MVS Favours Conv-MVS
rearior advaroup un	wiences.	140r db	Purcanie.				

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia

Minimally Invasive Versus Conventional Open Mitral Valve

Surgery

A Meta-Analysis and Systematic Review

Davy C. H. Cheng, MD,* Janet Martin, PharmD, MSc (HTA&M),*† Avtar Lal, MD, PhD,* Anno Diegeler, MD, PhD,‡ Thierry A. Folliguet, MD,§ L. Wiley Nifong, MD, Patrick Perier, MD,‡ Ehud Raanani, MD,¶ J. Michael Smith, MD,# Joerg Seeburger, MD,** and Volkmar Falk, MD††

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia

Minimally Invasive Versus Conventional Open Mitral Valve Surgery

A Meta-Analysis and Systematic Review

Davy C. H. Cheng, MD,* Janet Martin, PharmD, MSc (HTA&M),*† Avtar Lal, MD, PhD,* Anno Diegeler, MD, PhD,‡ Thierry A. Folliguet, MD,§ L. Wiley Nifong, MD,|| Patrick Perier, MD,‡ Ehud Raanani, MD,¶ J. Michael Smith, MD,# Joerg Seeburger, MD,** and Volkmar Falk, MD††

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia

Minimally Invasive Versus Conventional Open Mitral Valve Surgery A Meta-Analysis and Systematic Review

FACOLTÀ DI MEDICINA E CHIRURGIA

Minimally Invasive Versus Open Mitral Valve Surgery A Consensus Statement of the International Society of Minimally Invasive Coronary Surgery (ISMICS) 2010

Volkmar Falk, MD,* Davy C. H. Cheng, MD,† Janet Martin, PharmD, MSc (HTA&M),†‡ Anno Diegeler, MD,§ Thierry A. Folliguet, MD,|| L. Wiley Nifong, MD,¶ Patrick Perier, MD,§ Ehud Raanani, MD,# J. Michael Smith, MD,** and Joerg Seeburger, MD††

"In patients with mitral valve disease, minimally invasive surgery may be an alternative to conventional mitral valve surgery (Class IIb), given that there was:

1. Comparable short-term and long-term mortality (level B)

2. Comparable in-hospital morbidity (renal, pulmonary, cardiac complications, pain perception, and readmissions) (level B)

3. Reduced sternal complications (0% vs 0.3%), transfusions (1.5 vs 3.5 RBC units), postoperative atrial fibrillation (18% vs 22%), duration of ventilation, and ICU and hospital length of stay (level B)."

Minimally Invasive Versus Oper Mitral Valve Surgery A Consensus Statement of the International Society of Minimally Invasive Coronary Surgery (ISMICS) 2010

Volkmar Falk, MD,* Davy C. H. Cheng, MD,† Janet Martin, PharmD, MSc (HTA&M),†‡ Anno Diegeler, MD,§ Thierry A. Folliguet, MD,|| L. Wiley Nifong, MD,¶ Patrick Perier, MD,§ Ehud Raanani, MD,# J. Michael Smith, MD,** and Joerg Seeburger, MD††

"However, this should be considered against the increased risk of:

- 4. Stroke (2.1% vs 1.2%) (level B)
- 5. Aortic dissection (0.2% vs 0%) (level B)
- 6. Phrenic nerve palsy (3% vs 0%) (level B)
- 7. Groin infections/complications (2% vs 0%) (level B)

8. Prolonged cross-clamp time, cardiopulmonary bypass time, and procedure time (level B)."

A meta-analysis of minimally invasive versus conventional mitral valve repair for patients with degenerative mitral disease

Christopher Cao¹, Sunil Gupta¹, David Chandrakumar¹, Thomas A. Nienaber¹, Praveen Indraratna¹, Su C. Ang¹, Kevin Phan^{1,2}, Tristan D. Yan^{1,2}

Clinical outcomes		No. of	studies	MIN	IVR (n)	Sternotomy (n)	Relative risk (95% (CI) P-value	l ² (%)
Mortality		7		952		1,011	1.23 (0.22-6.88)	0.81	0
Cerebrovascular accide	ents*	6		906		929	1.43 (0.74-2.76)	0.29	0
Renal failure		3		284		305	0.96 (0.31-3.00)	0.95	0
Wound infection		4		634		670	2.97 (0.47-18.87)	0.25	29
Reoperation for bleedin	g	6		848		896	1.25 (0.60-2.62)	0.55	35
Aortic dissection		4		688		724	4.84 (0.55-42.43)	0.15	0
Myocardial infarction		3		284		305	1.15 (0.24-5.64)	0.86	0
Readmission within 30 Study or Subgroup	days Events	2 Total	Events	308 Total	Weight	315 M-H, Random, 95%	0.61 (0.31-1.21) CI M-H, Ran	0.16 dom, 95% Cl	0
Goldstone 2013 myxo	0	153	0	153		Not estimable	e 4 74		111
Grossi 2001	0	100	1	100	25.6%	0.33 [0.01, 8.09	9	10	
Raanani 2010	0	61	0	82		Not estimable	e	T	
Ruttman 2006	0	41	0	64		Not estimable	e_/ //		
Ryan 2010	0	177	0	177		Not estimable	e (///	.0	
Speziale 2011	2	70	1	70	46.1%	2.00 [0.19, 21.56	5)////////////////////////////////////		
Suri 2009	2	350	0	365	28.3%	5.21 [0.25, 108.21		1 CB	TD
Total (95% CI)		952		1011	100.0%	1.66 [0.33, 8.33	y /010-		
Total events	4		2					2	
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	0; Chi ² 0.61 (P	= 1.54, (? = 0.54)	d f = 2 (P =)	0.46);	l² = 0%	Mortality	0.01 0.1	1 10	100
		,					Favours MIMVF	ravours Stern	otomy

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia

Ann Cardiothorac Surg 2013;2(6):693-703

A meta-analysis of minimally invasive versus conventional mitral valve repair for patients with degenerative mitral disease

Christopher Cao¹, Sunil Gupta¹, David Chandrakumar¹, Thomas A. Nienaber¹, Praveen Indraratna¹, Su C. Ang¹, Kevin Phan^{1,2}, Tristan D. Yan^{1,2}

	MIMVR S		Sternote	Sternotomy		Risk Ratio	Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95%	CI M-H, Rand	om, 95% Cl	
Goldstone 2013 myxo	0	153	1	153	4.2%	0.33 [0.01, 8.1]	2]		
Grossi 2001	2	100	1	100	7.6%	2.00 [0.18, 21.7	1]	-	
Raanani 2010	3	61	4	82	20.2%	1.01 [0.23, 4.3	4]		
Ryan 2010	6	172	4	159	27.7%	1.39 [0.40, 4.8	2]		
Speziale 2011	1	70	2	70	7.6%	0.50 [0.05, 5.3	9]		
Suri 2009	10	350	4	365	32.6%	2.61 [0.83, 8.2	4 R 1 7		
Total (95% CI)		906		929	100.0%	1.43 [0.74, 2.70	^{3]} Stroko	•/ \\	
Total events	22		16				JUNE		
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	00; Chi² = = 1.07 (P	= 2.90, (= 0.29)	df = 5 (P =)	0.72);	l² = 0%		0.01 0.1 1 Favours MIMVR	10 Favours Ster	100 notomy
Time-related outcomes		No. of	studies	MIM	VR (n)	Sternotomy (n)	Standard mean difference (95% CI)	P-value	l² (%)
Cross-clamp time		6		852		911	1.47 (0.52-2.42)	0.003	99
CPB time		6		952		1,011	1.46 (0.40-2.51)	0.007	99
ICU stay	1	2		247		247	-0.77 (-1.36-0.17)	0.01	88
Length of hospitalizatio	n	4		658		694	-0.24 (-0.65-0.18)	0.26	92

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia

Ann Cardiothorac Surg 2013;2(6):693-703

What Is the Role of Minimally Invasive Mitral Valve Surgery in High-Risk Patients? A Meta-Analysis of Observational Studies

Marco Moscarelli, MD, Khalil Fattouch, MD, PhD, Roberto Casula, MD, Giuseppe Speziale, MD, PhD, Patrizio Lancellotti, MD, PhD, and Thanos Athanasiou, MD, PhD

	Favour MIMVS Favour ST			r ST		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Mihos 2014	1	22	4	28	9.5%	0.29 [0.03, 2.76]	2014	
Tang 2013	5	90	9	90	17.9%	0.53 [0.17, 1.65]	2013	
Iribarne 2012	5	70	3	105	15.0%	2.62 [0.60, 11.32]	2012	
Holzhey 2011	11	143	9	143	20.0%	1.24 [0.50, 3.09]	2011	
Sharony 2006	5	100	38	177	19.5%	0.19 [0.07, 0.51]	2006	_
Bolotin 2004	2	38	2	33	11.0%	0.86 [0.11, 6.48]	2004	
Burfeind 2002	Ō	60	21	155	7.1%	0.05 [0.00, 0.87]	2002	
Total (95% CI)		523		731	100.0%	0.55 [0.23, 1.34]		All studies
Total events	29		86					
Heterogeneity: Tau ² =	0.80; Chi2	² = 15.9	0, df = 6	i (P = 0	.01); $ ^2 = 0$	62%		
Test for overall effect:	Z = 1.32 (P = 0.1	9)				<	Favours [MIMVS] Favours [ST]

в

	Favour [M	IMVS]	Favour	[ST]		Odds Ratio		Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Rand	om, 95% Cl	()
Mihos 2014	1	22	4	28	10.2%	0.29 [0.03, 2.76]	2014	///////		
Tang 2013	5	90	9	90	30.0%	0.53 [0.17, 1.65]	2013			
Iribarne 2012	5	70	3	105	21.0%	2.62 [0.60, 11.32]	2012	7 DHH -		
Holzhey 2011	11	143	9	143	38.8%	1.24 [0.50, 3.09]	2011	$(A \frac{1}{k}$		1
								(1) (0)	High-gu	ality
Total (95% CI)		325		366	100.0%	0.97 [0.45, 2.10]		/ V 10		12
Total events	22		25						studies	
Heterogeneity: Tau ² =	= 0.18; Chi ²	= 4.25,	df = 3 (P	= 0.24); l ² = 29	8			10	100
Test for overall effect	: Z = 0.08 (F	P = 0.93)					Favours [MIMVS]	Favours [STI]	100

ARTICLE IN PRESS

Mitral valve surgery? <u>Right lateral minithoracotomy or sternotomy</u>? A systematic review and meta-analysis

Simon H. Sündermann, MD,^a Juri Sromicki, MD,^a Héctor Rodriguez Cetina Biefer, MD,^{a,b} POLICLINICO SAN DONATO Burkhardt Seifert, MD, PhD,^c Tomas Holubec, MD,^a Volkmar Falk, MD, PhD,^a and Stephan Jacobs, MD^a

Objective: To update the current evidence on mitral valve surgery through a lateral minithoracotomy versus median sternotomy.

Methods: A comprehensive literature research was performed for studies comparing mitral valve surgery through a right lateral minithoracotomy (MIVS) and median sternotomy in MEDLINE, EMBASE, Cochrane Central, CTSnet, and Google Scholar for the most recent literature up to April 2013. A systematic review and meta-analysis was performed on the studies found in the literature.

Results: More than 20,000 patients from 45 studies were included in this study. Stroke rate and all-cause mortality up to 30 days was similar in both groups. The length of stay in the intensive care unit, respirator dependence, and hospital stay were significantly shorter in the MIVS group. Furthermore, blood drainage volume and blood transfusions were decreased in the MIVS group. In contrast, cardiopulmonary bypass time, crossclamp time, and procedure time were longer in the MIVS group. Postoperative new atrial fibrillation was less in the MIVS group. More aortic dissections occurred in the MIVS group. The rates of reexploration and postoperative renal failure were similar in both groups.

Conclusions: MIVS and conventional mitral valve surgery have a similar perioperative outcome. Mitral valve surgery via a right lateral minithoracotomy seems to be favorable with regard to resource-related outcome. (J Thorac Cardiovasc Surg 2014;148:1989-95)

A meta-analysis of robotic vs. conventional mitral valve surgery

Christopher Cao¹, Hugh Wolfenden², Kevin Liou³, Faraz Pathan³, Sunil Gupta¹, Thomas A. Nienaber¹, David Chandrakumar¹, Praveen Indraratna¹, Tristan D. Yan^{1,4}

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia

Ann Cardiothorac Surg 2015;4(4):305-314

Systematic review of robotic minimally invasive mitral valve surgery

Michael Seco^{1,2}, Christopher Cao^{2,3}, Paul Modi⁴, Paul G. Bannon^{1,2,3,5}, Michael K. Wilson^{5,6}, Michael P. Vallely^{1,2,5,6}, Kevin Phan^{3,5}, Martin Misfeld⁷, Friedrich Mohr⁷, Tristan D. Yan^{1,2,3,5}

0.0-9.1% for conversion to non-robotic surgery

- 106 ± 22 to 188.5 ± 53.8 min for CPB time
- 79 ± 16 to 140 ± 40 min for cross-clamp time
- 0.0-3.0% mortality
- 0.0-3.2% myocardial infarction
- 0.0-3.0% permanent stroke,
- 0.0-5.0% reoperations for bleeding
- 1.5-5.4% for early repair failure

81.7-97.6% no or trivial mitral regurgitation before discharge

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di Medicina e chirurgia

Ann Cardiothorac Surg 2013;2(6):704-716

DURABILITY?

Minimally invasive mitral valve surgery: "The Leipzig experience"

Piroze M. Davierwala, Joerg Seeburger, Bettina Pfannmueller, Jens Garbade, Martin Misfeld, Michael A. Borger, Friedrich W. Mohr

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia

Ann Cardiothorac Surg 2013;2(6):744-750

One thousand minimally invasive mitral valve operations: Early outcomes, late outcomes, and echocardiographic follow-up

R. Scott McClure, MD, SM, FRCSC, Leonidas V. Athanasopoulos, MD, PhD, Siobhan McGurk, MSc, Michael J. Davidson, MD, Gregory S. Couper, MD, and Lawrence H. Cohn, MD

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia

J Thorac Cardiovasc Surg 2013;145:1199-206

Minimally invasive mitral valve repair in Barlow's disease: Early and long-term results

Michael A. Borger, MD, PhD, Anna F. Kaeding, MD, Joerg Seeburger, MD, PhD, Serguei Melnitchouk, MD, Michael Hoebartner, MD, Michael Winkfein, MD, Martin Misfeld, MD, PhD, and Friedrich W. Mohr, MD, PhD

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia

The Journal of Thoracic and Cardiovascular Surgery · Volume 148, Number 4

Two different issues:

- 1. What is the gold standard in primary MV repair
- 2. What is the role of patient selection

Preoperative risk factors of medium-term mitral valve repair outcome

Jiangang Wang^{a,}*, Jie Han^a, Yan Li^a, Chunlei Xu^a, Yuqing Jiao^a, Bo Yang^b, Xu Meng^a and Steven F. Bolling^b

Table 3: Regression analysis

Variables	Univariate an	alysis		Multivariate analysis			
	HR/OR ^a	95% CI	P-value	HR/OR ^a	95% CI	P-value	
Early mortality							
Age (by 5-year increments)	1.620	1.015-2.698	0.049	1.114	0.698-1.786	0.671	
NYHA III/IV	2.347	1.482-4.663	0.001	2.154	1.428-4.296	0.016	
AF	2.115	1.047-2.495	0.023	1.935	1.048-2.290	0.038	
LVEF ≤50%	0.510	0.315-0.816	0.005	0.647	0.348-0.840	0.017	
LVESD	1.089	0.995-1.156	0.051	1.068	0.674-1.185	0.434	
TR grade	1.735	0.431-1.986	0.086	1.156	0.936-1.275	0.091	
sPAP ≥50 mmHg	1.128	1.036-1.852	0.009	1.277	1.203-1.686	0.041	
LCOS with ECMO	3.862	1.916-8.419	0.003	2.673	2.005-4.252	0.010	
Renal failure	1.973	1.723-3.528	0.010	1.826	0.972-2.416	0.140	
Late mortality							
Age (by 5-year increments)	1.135	1.102-1.783	0.010	1.052	0.972-1.218	0.117	
NYHA III/IV	4.367	2.234-7.835	0.004	3.013	2.034-4.104	0.024	
TR grade	2.016	0.735-4.763	0.079	1.283	0.943-2.556	0.061	
LVEF ≤50%	0.901	0.743-1.962	0.062	0.869	0.976-1.701	0.102	
AF	2.184	1.154-3.236	0.023	1.905	1.163-2.610	0.048	
LVESD ≥40 mm	1.204	1.135-2.046	0.006	1.263	1.205-1.935	0.037	
sPAP ≥50 mmHg	1.249	1.160-1.972	0.004	1.209	1.024-1.892	0.024	
Reoperation							
Post-rheumatic	1.356	1.150-2.204	0.042	1.253	0.961-1.872	0.370	
AL involvement	1.182	1.101-1.325	0.021	1.116	1.013-1.204	0.020	
Edge-to-edge	2.354	0.384-3.105	0.092	1.486	0.853-1.936	0.057	
Predischarge residual MR grade ≥2	1.063	1.014-2.095	0.020	1.020	1.009-1.641	0.027	
Recurrent moderate-to-severe MR							
AL involvement	1.216	1.038-2.286	0.001	1.137	1.075-1.526	0.020	
Edge-to-edge	1.135	0.417-2.041	0.071	1.101	0.937-1.201	0.060	
Predischarge residual MR grade ≥2	1.312	1.216-1.946	0.017	1.085	1.079-1.103	0.033	

UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI MEDICINA E CHIRURGIA

Interactive CardioVascular and Thoracic Surgery 19 (2014) 946-954

Comparative long-term results of mitral valve repair in adults with chronic rheumatic disease and degenerative disease: Is repair for "burnt-out" rheumatic disease still inferior to repair for degenerative disease in the current era?

Jeswant Dillon, MD, FRCS,^a Mohd Azhari Yakub, MBBS, FRCS,^a Pau Kiew Kong, MBBS, FRCS,^a Mohd Faizal Ramli, BSc, MSc,^b Norfazlina Jaffar, BSc,^b and Intan Fariza Gaffar, BSc^b

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia

J Thorac Cardiovasc Surg 2015;149:771-9

To be considered when choosing minimally invasive & robotic approaches

- extensive pleural adhesions (prior thoracotomy)
- poor pulmonary function
- aortic regurgitation
- pectus excavatum/chest wall deformities
- morbid obesity
- breast reconstruction
- chest radiation
- severe mitral annular calcification
- severe aorto-iliac disease

To be considered when choosing minimally invasive & robotic approaches

- renal failure
- liver dysfunction
- bleeding disorders
- PAPs > 60 mmHg
- coronary artery disease requiring surgery
- significant tricuspid valve disease
- recent (< 30 d) myocardial ischemia
- recent (< 30 d) stroke
- (high risk patients with comorbidities)
- poor ventricular function

Is current evidence robust enough to recommend only minimally invasive/robotic MV repair??

- Probably not yet but....we can make it!!!
- We still need more info on durability
-we may (or may not) reach a satisfactory level of evidence in the years to come....

My very personal reccomendations (not evidence-based)

POLICLINICO SAN DONATO

- BE SAFE!!!
- BE SAFE!!!
- Careful planning is essential
- Choose the technical options you are more familiar with
- Move to one technique to another step by step

EuroValve March 10-11, 2016

Thank you for your attention!

www.eurovalvecongress.com

Comparative long-term results of mitral valve repair in adults with chronic rheumatic disease and degenerative disease: Is repair for "burnt-out" rheumatic disease still inferior to repair for degenerative disease in the current era?

Jeswant Dillon, MD, FRCS,^a Mohd Azhari Yakub, MBBS, FRCS,^a Pau Kiew Kong, MBBS, FRCS,^a Mohd Faizal Ramli, BSc, MSc,^b Norfazlina Jaffar, BSc,^b and Intan Fariza Gaffar, BSc^b

"The presence of residual mitral regurgitation greater than 2 before discharge was the only significant independent predictor of reoperation, whereas residual mitral regurgitation greater than 2 and leaflet procedures were significant risk factors for valve failure."

J Thorac Cardiovasc Surg 2015;149:771-9

Minimally invasive surgery(2)

Author	Year	Institution	Study Period	MIMVR (n)	Sternotomy	Follow-up period			
					(n)	(months)			
Goldstone	2013	University of Pennsylvaniva, USA	2002-2011	153	153	50.4 ^M			
Speziale	2011	Villa Azzurra Hospital & Anthea Hospital, Italy	2006-NR	70	70	12.4			
Ryan	2010	Cardiopulmonary Research Science and	1996-2008	177	177	62.4±34.8			
		Technology Institute, USA							
Raanani	2010	Chaim Shebe Medical Centre, Israel	2000-2009	61	82	41±24 [†] ;28±22 [§]			
Suri	2009	University of Pennsylvania (MIMVR) & Mayo	1999-2006	350	365	NR			
		Clinic (Sternotomy) , USA							
Ruttman	2006	Medical University of Innsbruck, Austria	2001-2005	42	64	43.8 [†] ; 41.8 [§]			
Grossi	Grossi 2001 New York University School of Medicine, USA 1993-1999 100 100 33								
MIMVR, minimally invasive mitral valve repair; NR, not reported; M, median; [§] , sternotomy; [†] , MIMVR.									

Outcomes	Included studies			Overall statistics		
Clinical outcomes	No. of studies	MIMVR (n)	Sternotomy (n)	Relative risk (95% CI)	P value	l ² (%)
Mortality	7	952	1,011	1.23 (0.22-6.88)	0.81	0
Cerebrovascular accidents*	6	906	929	1.43 (0.74-2.76)	0.29	0
Renal failure	3	284	205	0.90 (0.31-3.00)	0.95	0
Wound infection	4	634	670	2.97 (0.47-18.87)	0.25	29
Reoperation for bleeding	6	848	896	1.25 (0.60, 2.62)	0.55	35
Aortic dissection	4	688	724	4.84 (0.55-42.43)	0.15	0
Myocardial infarction		204	305	1.10 (0.21 0.04)	0.86	0
Readmission within 30 days	2	308	315	0.61 (0.31-1.21)	0.16	0
Time-related outcomes	No. of studies		Sternotomy (n)	Standard mean	P-value	l² (%)
Cross-clamp time	6	852	911	1.47 (0.52-2.42)	0.003	99
CPB time	6	952	1,011	1.46 (0.40-2.51)	0.007	99
ICU stay	2	247	247	-0.77 (-1.36-0.17)	0.01	88
Length of hospitalization	4	658	694	-0.24 (-0.65-0.18)	0.26	92

CPB, cardiopulmonary bypass; ICU, intensive care unit.

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia Ann Cardiothorac Surg. 2013 Nov; 2(6): 693–703. 10.3978/j.issn.2225-319X.2013.11.08

- Minimally invasive techniques aim to achieve similar or superior safety and efficacy to conventional surgery with the added advantages of reduced trauma, improved cosmesis and shorter hospitalization.
- Minimally invasive mitral valve surgery through a video-assisted thoracotomy approach was first introduced in the mid-1990s.

Minimally invasive surgery₍₃₎

A summary of severity of mitral regurgitation before (A) and after (B) mitral valve repair through the minimally invasive (blue) or conventional sternotomy (red) approach.

Traditional Open-Heart Surgery

Minimally Invasive Valve Surgery

UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI MEDICINA E CHIRURGIA

Ann Cardiothorac Surg. 2013 Nov; 2(6): 693-703. 10.3978/j.issn.2225-319X.2013.11.08

Forest plot of the relative risk (RR) of perioperative mortality after minimally invasive mitral valve repair (MIMVR) versus conventional sternotomy repair for degenerative mitral valve disease.

The estimate of the RR of each trial corresponds to the middle of the squares, and the horizontal line shows the 95% confidence interval (CI). On each line, the numbers of events as a fraction of the total number treated are shown for both treatment groups. For each subgroup, the sum of the statistics, along with the summary RR, is represented by the middle of the solid diamonds. A test of heterogeneity between the trials within a subgroup is given below the summary statistics.

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia Ann Cardiothorac Surg. 2013 Nov; 2(6): 693–703. 10.3978/j.issn.2225-319X.2013.11.08

Forest plot of the relative risk (RR) of cerebrovascular accidents after minimally invasive mitral valve repair (MIMVR) versus conventional sternotomy repair for degenerative mitral valve disease.

The estimate of the RR of each trial corresponds to the middle of the squares, and the horizontal line shows the 95% confidence interval (CI). On each line, the numbers of events as a fraction of the total number treated are shown for both treatment groups. For each subgroup, the sum of the statistics, along with the summary RR, is represented by the middle of the solid diamonds. A test of heterogeneity between the trials within a subgroup is given below the summary statistics

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia Ann Cardiothorac Surg. 2013 Nov; 2(6): 693–703. 10.3978/j.issn.2225-319X.2013.11.08

Minimally invasive surgery₍₆₎

Since then, a number of large studies have *demonstrated the feasibility of performing minimally invasive mitral valve repair (MIMVR) for* <u>Selected patients</u> in specialized centres. Despite encouraging institutional reports, broad adoption of the MIMVR technique has been limited.

Although previous meta-analyses reported *superior perioperative outcomes for minimally invasive mitral valve surgery compared to the conventional sternotomy approach*, limited attempts were made to differentiate repair versus replacement procedures and account for the significant variations in the underlying valvular pathology.

In addition, some surgeons remain concerned about the limited *exposure of the mitral valve, anerial injuries* and difficulties in deairing the heart that may result in an increased *incidence of cerebrovascular accidents*.

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di medicina e chirurgia Ann Cardiothorac Surg. 2013 Nov; 2(6): 693–703. 10.3978/j.issn.2225-319X.2013.11.08 Can Stock Photo - csp6570978

Minimally invasive surgery(7)

Table 4 A s	Table 4 A summary of surgical techniques performed during mitral valve surgery through mini-mitral or sternotomy approaches										
	Mini-mitral access	Mini-mitral	Cardio	oplegia	Mitral-valve repair details	Mitral-valve repair details			Conversion to		
Author	approach	clamp technique	Mini	Stern	Mini-mitral	Sternotomy	Mini-mitral	Sternotomy	sternotomy	N	
Goldstone	4 cm right thoracotomy in infra- mammary grove	Aortic cross- clamp or endoballoon	AG &	RG	Annuloplasty (5/153); leaflet resection (98/153); neochordae (29/153)	Annuloplasty (10/153); leaflet resection (121/153); neochordae (15/153)	NR	NR	NR		
Speziale	2 ports & 4-5 cm right anterolateral mini-thoracotomy 3 rd ICS & 5-7 th ICS	Aortic cross- clamp	AG	NR	Annuloplasty & artificial chordal re-implantation	Annuloplasty & artificial chordal re-implantation	AF ablation (11/70)	AF ablation (12/70)	1/70 (inadequate exposure)		
Ryan	4 cm incision 4 th right ICS with port access	Endoballoon	AG &	RG	Annuloplasty, chordal replacement and/or leaflet resection and sliding-plasty as required	Annuloplasty, chordal replacement and/or leaflet resection and sliding-plasty as required	NR	NR	2/177 (repair of coronary sinus)	/	

NO statistically significant differences between MIMVR and conventional mitral valve repair in regards to mortality, stroke, renal failure, wound infection, reoperation for bleeding, aortic dissection, myocardial infarction, atrial fibrillation, or readmission within 30 days.

The duration of ICU stay was shorter for patients who underwent MIMVR, but there was no significant difference between the two approaches in the duration of hospitalization.

Minimally invasive surgery(8)

The incidence of moderate/severe MR dropping from 98.7% and 98.4% preoperatively to 0.1% and 0.3% postoperatively comparing MIMVR with the conventional sternotomy approach.

In conclusion, the present meta-analysis comparing MIMVR with the conventional sternotomy approach for patients with degenerative mitral valve disease requiring repair did not identify any statistically significant difference in regards to perioperative clinical outcomes.

Patients who underwent MIMVR required significantly longer periods of cross-clamping and cardiopulmonary bypass. However, patients who underwent the minimally invasive approach had a significantly shorter ICU stay period, although this was not translated into a shorter hospitalization duration.

Although previous studies claim MIMVR results in reduced pain and quicker recovery, there appears to be a relative paucity of evidence to support these claims. Only one study reported improved pain outcomes for patients who underwent MIMVR within the first week postoperatively.

In view of the learning curve and multi-disciplinary training required to develop and maintain a successful MIMVR program, these procedures should currently be limited to specialist centres until more robust evidence supports broader adoption of this surgical technique.

Future studies should aim to attain longer clinical and echocardiographic follow-up in a randomized setting.

Table 1: Review of percutaneous mitral valve repair trials

Trials	Method	Efficacy	Safety
EVEREST	Single arm study to evaluate the feasibility and safety of mitral clip (n=107)	66% met the composite end-point of improved MR, freedom from cardiac surgery and freedom from death	104 were discharged home 5 patients had bleeding 3 had
			atrial septal complications
EVEREST II	279 patients with moderately severe to severe MR (almost half functional) randomized 2:1 percutaneous repair vs. conventional surgery	Effective at reducing MR	Less adverse events and
		Lower 30 days mortality	Less blood transfusion in the mitral clip arm
		Long durability up to 24 months Improved quality of live	
		More frequent additional procedures	
TITAN	The impact of mitral annuloplasty on functional MR in 36 patients	Improvement in 6MWD and Kansas City Cardiomyopathy Questionnaire	No device related complications reported
		Improvement in LV geometry	

MR: Mitral regurgitation, LV: Left ventricular

Real of the second seco

UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI MEDICINA E CHIRURGIA

LABORATORIO di BIOMORFOLGIA e NEUROBIOLOGIA Dipartimento di Morfologia Umana e Scienze Biomediche "Città Studi"