Case presentations: challenges in infective endocarditis:

Endocarditis in the intensive care and in the critically ill

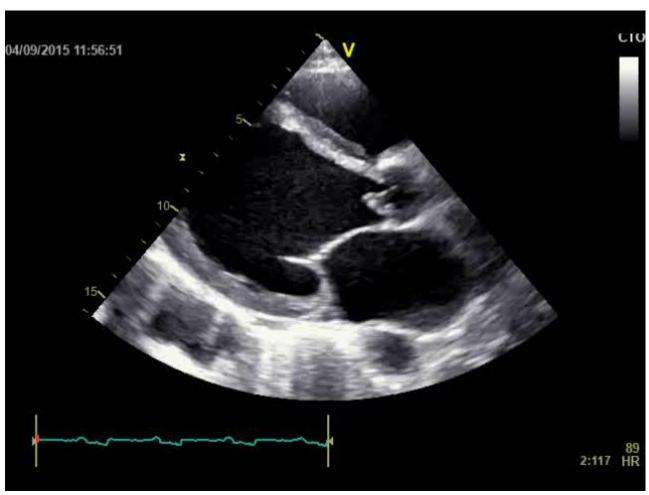
Eurovalves 2016

Case presentation (1)

- Male, 32 years old, US patient
- History
 - Fever 2 weeks before admission (38.2 °)
 - Progressively increasing SOB
 - Admitted at the ICU for septic shock

- SOFA score 9
- Tachycardia 115 bpm
- Diastolic murmur aortic 3/6

- Blood cultures: streptoccus pneumoniae x 3

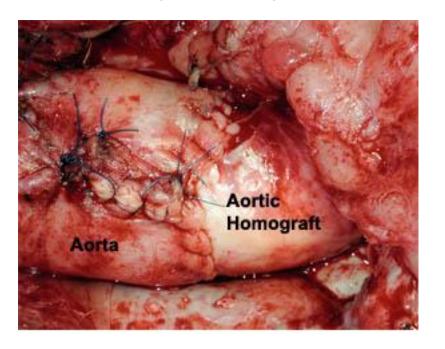


Centrum voor

Echocardiography

Evolution

- Develop coma (Glasgow 6)
- Rapid evolution in multiple organ failure
 - Intubation and mechanical ventilation
 - Hepatic failure with severe coagulation dysfunction
 - Acute renal failure



- Cerebral CT in emergency showing a small cerebral haemorrhagic stroke
- Abdominal echocardiography showing no hepatic abcess
- Classical antibiotherapy: penicillin G, 3 g every 6-8 hours IV (MIC< 0.1 microg/L)

Evolution (2)

- Despite several contra-indications for surgery
- Emergency surgery cleaning + homograft

- Long stay, progressive recovery

ICU infective endocarditis

- Presentation
- Causal agents
- Surgical procedure
- Prognostic factors

Main indications for IE/ICU admission

Septic shock

Severe valvular regurgitation

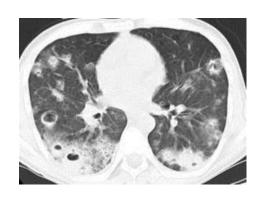
Cardiogenic shock

Acute renal failure

Acute respiratory failure requiring mechanical ventilation

Neurological complications

Community-acquired/hospital-acquired IE


Native valve/prosthetic valve IE

Presentation: specific features

- Frequent extra-cardiac involvement (35% >50 %)
 - -Mainly central nervous system (> 70%) < CT, MRI, spinal fluid
 - -Ischemic stroke
 - -Cerebral haemorrhage
 - -Meningitis
 - -Cerebral abcess
 - -Intracranial mycotic aneurysm
 - -Systemic embolism or metastatic infective events (> 25%)
 - -Spleen
 - -Bone and joints
 - -Kidneys
 - -Lungs
 - -Liver

Causal agents IE in ICU

- Stapylococcus aureus (43-56 %) > general population
- Streptococcus sp (20-58 %)
- Negative blood culture (15%)

- Depending on Native vs. Native and Prosthetic
- Depending on left side vs. Left and right side

Mourvilliers et al Intensive Care Med. 2004 Nov; 30(11):2046-52 Murdoch et al Arch Intern Med. 2009 Mar 9; 169(5):463-73 Samol et al Infection. 2015 Jun; 43(3):287-95

Selton-Suty et al Clin Infect Dis. 2012 May; 54(9):1230-9

Akinosoglu et al Eur J Intern Med. 2013 Sep; 24(6):510-9

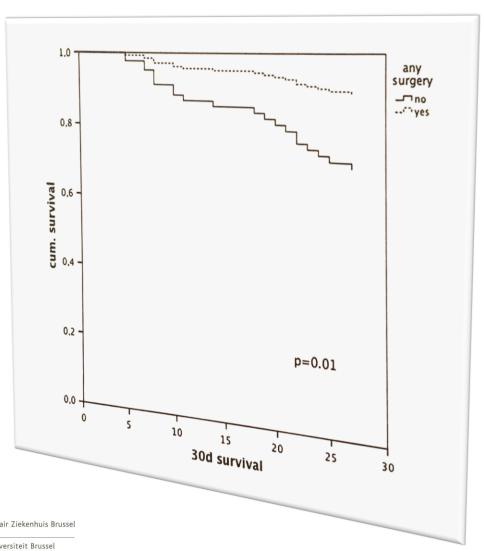
Surgery in critically ill

- Need for surgery 35-52 %
- Emergency surgery Indicated in 75 % performed in 53%
- Cardiac surgery available or not (crucial point) cf ENDOREA
- Impact of timing

Timing of surgery	Indications	Number of patients with contra-indications	Contra-indications
Emergency $n = 69$	Cardiogenic shock n = 41	33 (47.8 %)	Multiple organ failure $n = 16$
	Refractory pulmonary oedema $n=28$		Hemorrhagic stroke $n = 8$
			Severe underlying diseases $n = 7$
			Risk of extra cerebral hemorrhage $n=2$
Urgent $n = 102$	Very large vegetations = 43	50 (49 %)	Risk of cerebral hemorrhage $n = 22$
	Large vegetations and embolic episodes $n = 21$		Multiple organ failure $n = 16$
	Annular abscess n = 27		Severe underlying diseases $n = 11$
	Uncontrolled infection $n = 8$		Risk of extra cerebral haemorrhage $n = 1$
	Severe acute regurgitation $n = 3$		
Elective $n = 15$	Severe regurgitation without heart failure $n = 12$	2 (13.3 %)	Severe underlying diseases $n = 1$
	Severe prosthetic dehiscence $n = 3$		Multiple organ failure $n = 1$

Sonneville et al Crit Care Med 2011; 39: 1474

Leroy et al Ann Intensive Care. 2015; 5: 45. Mourvilliers et al Intensive Care Med. 2004 Nov; 30(11):2046-52


Mirabel et al Eur Heart J. 2014 May; 35(18):1195-204 Samol et al Infection. 2015 Jun; 43(3):287-95

Surgery in critically ill: mortality

Timing of surgery	Number of patients	Number of patients with surgery performed during ICU stay	In hospital mortality n (%)	Number of patients with surgery not performed during ICU stay	In hospital mortality <i>n</i> (%)
Patients with contra-indications to surgery $n = 85$					
Emergency	33	6	1 (16.7 %)	27	25 (92.6 %)
Urgent	50	8	1 (12.5 %)	42	30 (71.4 %)
Elective	2	1	0	1	0
Patients without contra-indications to surgery $n = 101$					
Emergency	36	36	6 (16.6 %)	0	0
Urgent	52	41	11 (21.2 %)	11	0
Elective	13	7	0	6	2 (33.3 %)

Surgery in critically ill: mortality IP

HR 0.31 (0.12-0.79), p< 0.01 25 % mortality ICU stay N=216

Prognostic factors

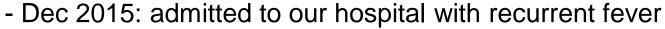
- Infective agent and affected valve not independent predictors (ST/LT)
- Comorbidities (CAD, prior transplant, prior endocarditis) no significant influence
- Low WBC count (less than 13.000/ microL) IP of better prognosis
- Organ failure and high ICU scores are independent predictors (ST/LT)
- Surgical clearance is an independent predictor of 30 d outcome

Prognostic factors (2)

	Factor	Survivors $n = 145$	Non-survivors $n = 103$	p
ſ	Charlson score	4.18 ± 2.80	5.15 ± 2.46	0.003
١	SAPS II	30.99 ± 13.16	44.60 ± 17.95	< 0.0001
ı	SAPS II > 35	43 (38.4 %)	69 (61.6 %)	<0.0001
ı	SOFA score	5.65 ± 2.77	8.93 ± 3.91	< 0.0001
ı	SOFA score >8	30 (33 %)	61 (67 %)	< 0.0001
	Glasgow Coma Score <9	7 (17.9 %)	32 (82.1 %)	<0.0001
	ICU admission for septic shock	17 (31.5 %)	37 (68.5 %)	< 0.0001
	ICU admission for cardiogenic shock	16 (41 %)	23 (59 %)	0.016
	ICU admission for acute respiratory failure	22 (78.6 %)	6 (21.4 %)	0.02
	ICU admission for severe valvular regurgitation	40 (87 %)	6 (13 %)	<0.0001
	Mitral IE	80 (52.6 %)	72 (47.4 %)	0.02
	Native IE	121 (62.05 %)	74 (37.95 %)	0.03
	Prosthetic IE	24 (45.3 %)	29 (54.7 %)	0.03
	Annular abscess	31 (46.3 %)	36 (53.7 %)	0.02
	Severe aortic regurgitation	50 (75.8 %)	16 (24.2 %)	0.0009
	Left ventricular ejection fraction (%)	57 ± 11	52 ± 13	0.005
	IE due to Streptococcus spp.	72 (67.3 %)	35 (32.7 %)	0.01
	IE due to MSSA	36 (48.70 %)	38 (51.3 %)	0.04
	IE due to MRSA	4 (25 %)	12 (75 %)	0.005
	Adequate antimicrobial treatment	127 (61.7 %)	79 (38.3 %)	0.02
	Surgery during ICU stay	80 (80.8 %)	19 (19.2 %)	<0.0001
	Surgery (overall)	102 (81.6 %)	23 (18.4 %)	<0.0001
	Adequate surgery	65 (85.5 %)	11 (14.5 %)	< 0.0001

Take home messages

- Mortality of IE in ICU remains high
- High ICU scores (SPAPS II, SOFA) are independent predictors of mortality
- Multiple organ failure is also an independent predictor of mortality
- Search for extra cardiac extension (more frequent)
- Surgery is conveying a better prognosis referring to tertiary center
- IA and affected valve are not independent predicitors of mortality in ICU patients
- Our patient was lucky to survive



Use the u	worst value for each p	hysiological varia	able within the past	t 24 hours.	
		VITALS			
HR	ВР	RR	Temp	GCS	
bpm ②	/ mmHg	bpn	n CorF	3	
	ART	TERIAL BLOOD GA	ıs		
рН	pC	:02	pO2	FiO2	
	mr	nHg	mmHg	%	
Mechan	nical ventilation or CPAP		Yes	No ②	
		CHEM-7			
<u>Na</u>	K	CO2	BUN	SCr	
mEq/L	mEq/L	mEq/L	mg/dL	mg/dL	
	Acute renal failure		Y	es No	
		СВС			
wвс х 10 ⁹ /L		Hct		x10 ³ /mm ³	
		MISC METRICS			
Urine output		1	mL per hour +		
Bilirubin		mg/dL			
/asopressors			Yes		
	С	HRONIC HEALTH			
Age		1	years		
Chronic diseases	☐ Hemato	☐ Metastatic cancer ② ☐ Hematologic malignancy ③ ☐ AIDS ②			

Case presentation (2)

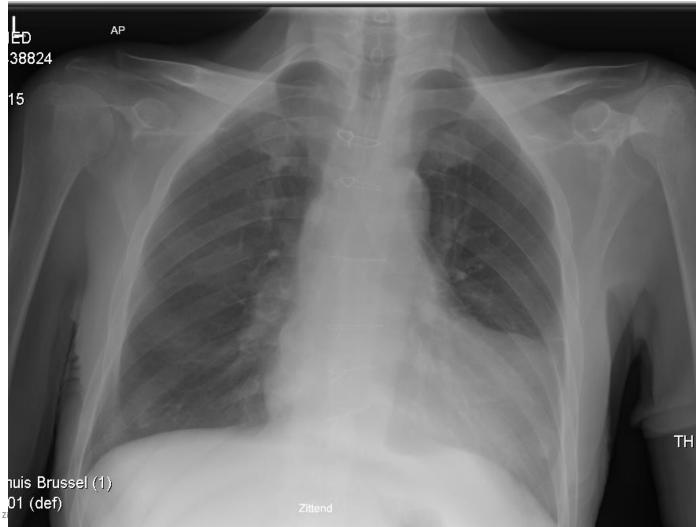
- Male, 77 years old
- History
 - AMI and CABG (2003)
 - End stage renal disease (dialysis)
 - Diabetes mellitus type 2
 - Arterial hypertension
 - Ischemic CVA
 - Prostate carcinoma

- Lab: CRP 71 mg/L, mild leucocytosis.
- Blood cultures: oxacilline-sensitive S. aureus (MSSA)

Case presentation (2)

- Three previous reoccurrences of MSSA sepsis of unknown origin in other hospitals, within 6 months:
 - July 2015:
- Fever, vomiting, diarrea
- HC: MSSA + 4 days. Flucloxacilline IV 14 days.
- Negative investigations (TEE, CT abdomen,

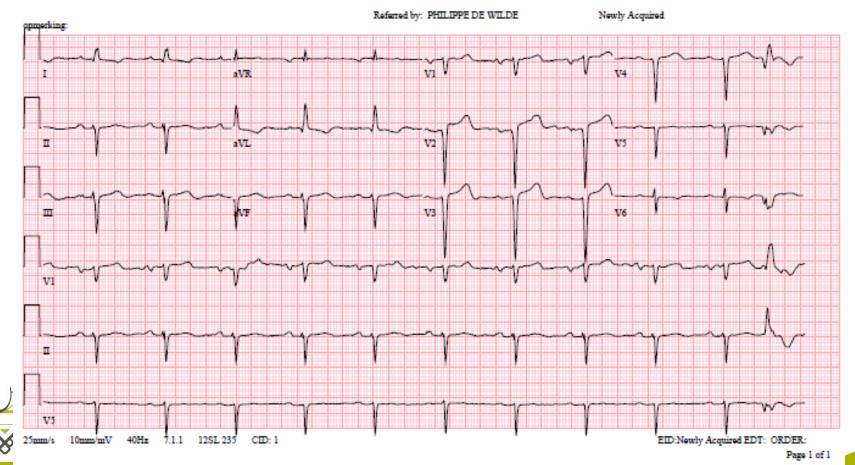
Head CT, NMR spine)

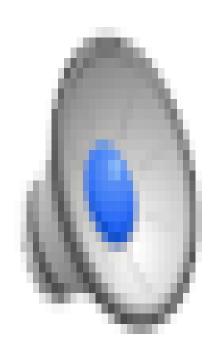


STAPHYLOCOCCUS

- August-September 2015:
 - Fever
 - HC MSSA: + 9 days. Vancomycine → Flucloxacilline IV 35 days
 - Negative investigations (TEE, CT abdomen-thorax, WBC scintigraphy)
- October 2015:
 - Fever during dialysis.
 - HC: MSSA +. Flucloxacilline IV 7 days → Cefazoline PO 15 days
 - Refuses investigations, demands hospital discharge.

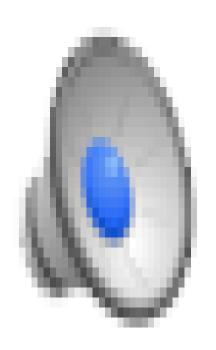
Rx thorax



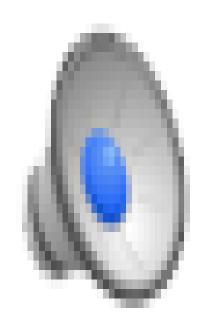

ECG

	Vent. rate	68 B	PM	SINUSRITME MET 1E GRAADS AV-BLOCK MET INCIDENTELE VENTRICULAIRE EXTRASYSTOLEN
	PR interval	216	1115	MOGELUK LINKER ATRIUM VERGROTING
	QRS duration		1115	LINKER ANTERIOR FASCIKELBLOCK
Room:	QT/QTc	444/472	me	ANTEROSEPTAAL INFARCT ONBEPAALDE LEEFTIID
Loc:162	P-R-T axes	57 -75	114	T-TOPAFWIJKING, OVERWEEG ISCHEMIE LATERALE WAND
				ABNORMAAL ECG

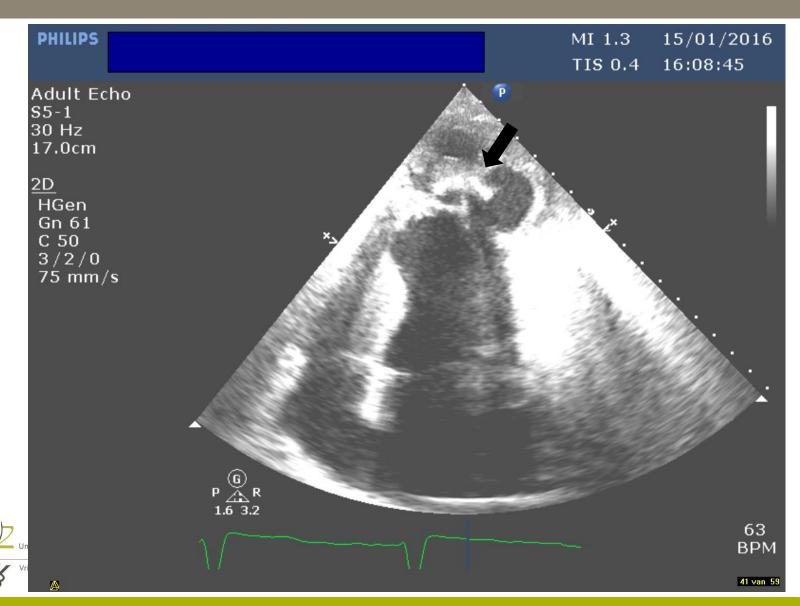
Technician: Test ind:



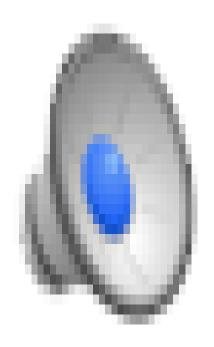
Transthoracic echocardiography (1)



Transthoracic echocardiography (2)



Transthoracic echocardiography (3)



Transthoracic echocardiography (4)

Transthoracic echocardiography (5)

Echocardiography (6)

TTE findings:

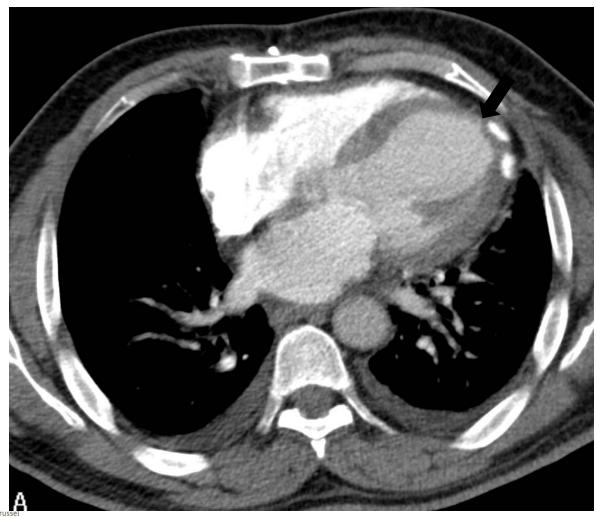
- LVEF 35%
- Akinesia apical, anterior
- Mildly reduced RV longitudinal contractility
- Dilated atria
- Tricuspid aortic valve, mild aortic regurgitation, no stenosis
- Mild mitral and tricuspid valve regurgitation
- No pulmonary hypertension
- No pericardial effusion

Computed Tomography (1)

Universitair Ziekenhuis Brussel

Vrije Universiteit Brussel

Computed Tomography (2)



- Universitair Ziekenbuis

Vrije Universiteit Brussel

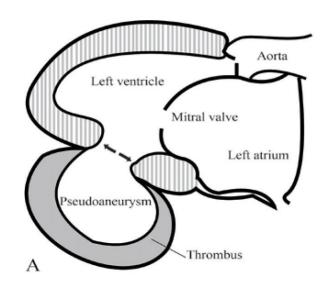
Computed Tomography (3): 6 years earlier

Universitair Ziekenhuis Brussel

Vrije Universiteit Brussel

PET-CT

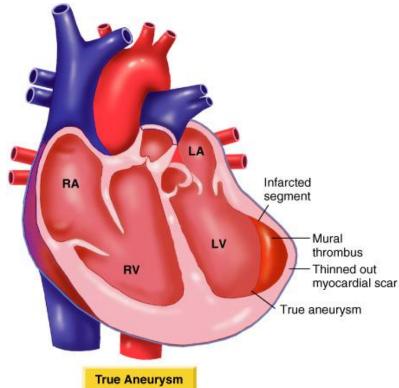
Computed Tomography: comparison


Universitair Ziekenhuis Brussel

Vrije Universiteit Brussel

Pseudo-aneurysm (1)

- Not common, median age = 60 years old
- Etiology
 - Post- transmural myocardial infarction
 - 33% post-surgery (MVR, CABG)
 - Trauma
 - Infection
 - . . .



- Rupture through thinned myocardial wall
- Contained by adherent pericardium or scar tissue
- Filled with thrombus material or adhesion tissue

Pseudo-aneurysm (2)

- Wide base
- 2. Walls composed of myocardium
- 3. Low risk of rupture

- 1. Narrow base
- Walls composed of thrombus and pericardium
- 3. High risk of rupture

Pseudo-aneurysm (3)

Evolution

- >10% asymptomatic
- Congestive heart failure, chest pain and dyspnea are the most frequently reported symptoms
- Risk of infection with repetitive sepsis
- Risk of fistulation (to lungs)
- Risk of embolic cerebrovascular accidents
- Risk of arythmia
- Risk of rupture (45%) with tamponade: sudden death
- High mortality rate, especially those who do not undergo surgery

Pseudo-aneurysm (4)

Diagnosis

- Abnormalities on the electrocardiogram (95%): nonspecific ST segment changes
- Abnormal chest X-ray: mass, cardiomegaly (95%)
- Angiography
- (2D) color Doppler echocardiography (TTE/TEE)
- Radionuclide and CT scans, MRI


Pseudo-aneurysm (5)

Therapy

- Goal: to reduce the risk of expansion or rupture
- No randomized controlled trial exists to guide treatment decision
- For appropriate candidates, surgery is the treatment of choice
 - Direct suture
 - Endoventricular patch plasty
- Recurrence of pseudoaneurysm after surgery in 5%

Case presentation (3)

Treatment of our patient

- Based on
 - The extension of the infarcted wall
 - The calcifications and adipose tissue transformation
 - The frailty of the patient, co-morbidities
 - Wishes of the patient and family
 - → A conservative treatment approach was preferred for our patient.

Conclusions

- Left ventricle pseudo-aneurysm is a rare, late complication of myocardial infarction
- This case illustrates that it should be considered as a potential source of infection in patients suffering of recurrent sepsis.
- In our case, the pseudo-aneurysm was diagnosed with TTE. It's difficult to image the apex of the LV with TEE, especially if the LV is enlarged or has an apical aneurysm.
- Surgery is the treatment of choice

