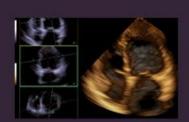


EuroValve March 10-11, 2016

Should we move toward low risk AS patients with TAVI?

J. Kefer, MD, PhD, FESC

Interventional Cardiology


Head of the Cardiac Cath Laboratory

Cliniques Universitaires Saint

Brussels, Belgium

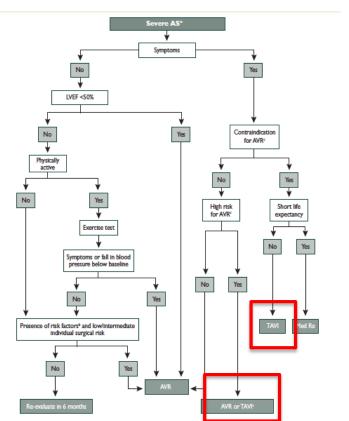
www.eurovalvecongress.com

EuroValve March 10-11, 2016

Faculty disclosure

Joelle Kefer

I disclose the following financial relationships:


Consultant for StJude Medical **Receive grant/research support** from Abbott Vascular

AVR: risk of surgery

Table 7 Operative mortality after surgery for valvular heart disease

	EACTS (2010)	STS (2010)	UK (2004–2008)	Germany (2009)
Aortic valve replacement,	2.9	3.7	2.8	2.9
no CABG (%)	(40 662)	(25 515)	(17 636)	(11 981)

A logistic Euro-

SCORE \geq 20% has been suggested as an indication for TAVI therapy but EuroSCORE is known to markedly overestimate operative mortality. Use of the STS scoring system >10% may result in a more realistic assessment of operative risk. 40

In the absence of a perfect quantitative score, the risk assessment should mostly rely on the clinical judgement of the 'heart team', in addition to the combination of scores. 113

AVR: risk of surgery

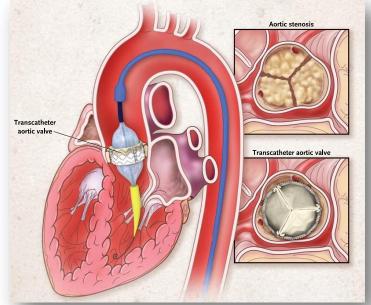
Table 5. Risk Assessment Combining STS Risk Estimate, Frailty, Major Organ System Dysfunction, and Procedure-Specific Impediments

	Low Risk (Must Meet ALL Criteria in This Column)	Intermediate Risk (Any 1 Criterion in This Column)	High Risk (Any 1 Criterion in This Column)	Prohibitive Risk (Any 1 Criterion in This Column)
STS PROM*	<4% AND	4%-8% OR	>8% OR	Predicted risk with surgery of death or major morbidity (all-cause)
Frailty†	None AND	1 Index (mild) OR	\geq 2 Indices (moderate to severe) OR	>50% at 1 y OR
Major organ system compromise not to be improved postoperatively‡	None AND	1 Organ system OR	No more than 2 organ systems OR	≥3 Organ systems OR
Procedure-specific impediment§	None	Possible procedure-specific impediment	Possible procedure-specific impediment	Severe procedure-specific impediment

^{*}Use of the STS PROM to predict risk in a given institution with reasonable reliability is appropriate only if institutional outcomes are within 1 standard deviation of STS average observed/expected ratio for the procedure in question.

CKD indicates chronic kidney disease; CNS, central nervous system; CVA, stroke; DLCO₂, diffusion capacity for carbon dioxide; FEV1, forced expiratory volume in 1 s; GI, gastrointestinal; INR, international normalized ratio; LV, left ventricular; PROM, predicted risk of mortality; RV, right ventricular; STS, Society of Thoracic Surgeons; and VKA, vitamin K antagonist.

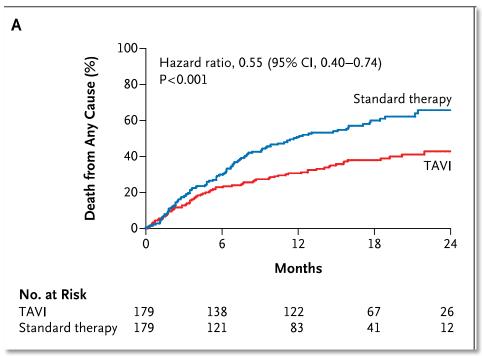
[†]Seven frailty indices: Katz Activities of Daily Living (independence in feeding, bathing, dressing, transferring, toileting, and urinary continence) and independence in ambulation (no walking aid or assist required or 5-meter walk in <6 s). Other scoring systems can be applied to calculate no, mild-, or moderate-to-severe frailty.

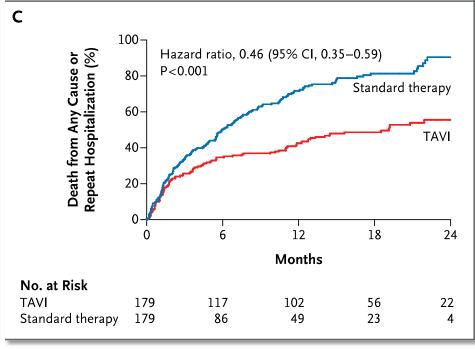

[‡]Examples of major organ system compromise: Cardiac—severe LV systolic or diastolic dysfunction or RV dysfunction, fixed pulmonary hypertension; CKD stage 3 or worse; pulmonary dysfunction with FEV1 <50% or DLCO₂ <50% of predicted; CNS dysfunction (dementia, Alzheimer's disease, Parkinson's disease, CVA with persistent physical limitation); GI dysfunction—Crohn's disease, ulcerative colitis, nutritional impairment, or serum albumin <3.0; cancer—active malignancy; and liver—any history of cirrhosis, variceal bleeding, or elevated INR in the absence of VKA therapy. §Examples: tracheostomy present, heavily calcified ascending aorta, chest malformation, arterial coronary graft adherent to posterior chest wall, or radiation damage.

European Heart Survey, Iung et al, Eur Heart J 2003

Smih C, NEJM 2011;364:2187-98

Initial concept of TAVI: clinical need AS untreated in 32% cases @ high risk


Δ at 1 yr = 20.0% NNT = 5.0 pts


The NEW ENGLAND JOURNAL of MEDICINE

Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery

Martin B. Leon, M.D., Craig R. Smith, M.D., Michael Mack, M.D., D. Craig Miller, M.D., Jeffrey W. Moses, M.D., Lars G. Svensson, M.D., Ph.D., E. Murat Tuzcu, M.D., John G. Webb, M.D., Gregory P. Fontana, M.D., Raj R. Makkar, M.D., David L. Brown, M.D., Peter C. Block, M.D., Robert A. Guyton, M.D., Augusto D. Pichard, M.D., Joseph E. Bavaria, M.D., Howard C. Herrmann, M.D., Pamela C. Douglas, M.D., John L. Petersen, M.D., Jodi J. Akin, M.S., William N. Anderson, Ph.D., Duolao Wang, Ph.D., and Stuart Pocock, Ph.D., for the PARTNER Trial Investigators*

 Δ at 1 yr = 29.1% NNT = 3.4 pts

STS: 11.2 ± 5.8

Log Euroscore : 26.4 ± 17.2

ORIGINAL ARTICLE

Transcatheter Aortic-Valve Replacement with a Self-Expanding Prosthesis

David H. Adams, M.D., Jeffrey J. Popma, M.D., Michael J. Reardon, M.D.,

This article was published on March 29 2014, at NEJM.org.

OOI: 10.1056/NEJMoa1400590

	Death from Any Cause (%)	100 - 90 - 80 - 70 - 60 - 50 - 40 - 30 - 20 - 10 - 90 - 90 - 90 - 90 - 90 - 90 - 9	30 - 25 - 20 - 15 - 10 - 5 - 0 - 0	2	4	P=0.04 for su Surgical re TAVR		19.1
		0	2	4	6	8	10	12
ı					Month	s		
1	No. at Risk							
	TAVR Surgical	390 377 357 341			353 297			329 274
1	replacement				297			2/4

Figure 2. Kaplan-Meier Cumulative Frequency of Death from Any Cause.

The rate of death from any cause in the TAVR group was noninferior to that in the surgical group (P<0.001). A subsequent test for superiority at 1 year showed that TAVR was superior to surgical replacement (P=0.04). The inset shows the same data on an enlarged y axis.

Table 1. Characteristics of the Patients at Baseline.* Characteristic Intention-to-Treat Population

4-10% — no. (%)

>10% — no. (%)

Logistic EuroSCORE - %±

			· · · · · · · · · · · · · · · · · · ·		
	TAVR Group (N=394)	Surgical Group (N=401)	TAVR Group (N=390)	Surgical Group (N=357)	
Age — yr	83.2±7.1	83.5±6.3	83.1±7.1	83.2±6.4	
Female sex — no. (%)	183 (46.4)	189 (47.1)	183 (46.9)	170 (47.6)	
NYHA class — no. (%)					
Class II	56 (14.2)	53 (13.2)	56 (14.4)	47 (13.2)	
Class III	258 (65.5)	277 (69.1)	255 (65.4)	248 (69.5)	
Class IV	80 (20.3)	71 (17.7)	79 (20.3)	62 (17.4)	
STS PROM estimate†					
Mean estimate — %	7.3±3.0	7.5±3.2	7.3±3.0	7.5±3.4	
<4% — no. (%)	33 (8.4)	42 (10.5)	33 (8.5)	40 (11.2)	

288 (71.8)

71 (17.7)

18.4±12.8

308 (78.2)

53 (13.5)

17.6±13.0

As-Treated Population

304 (77.9)

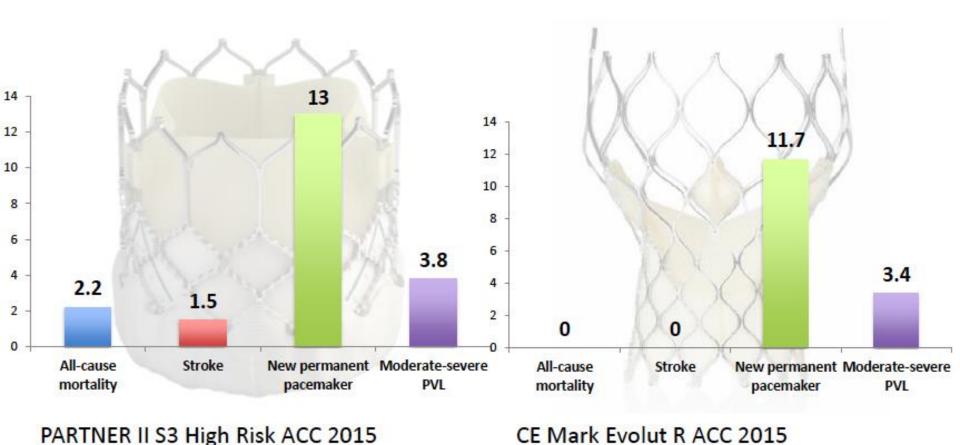
53 (13.6)

17.7±13.1

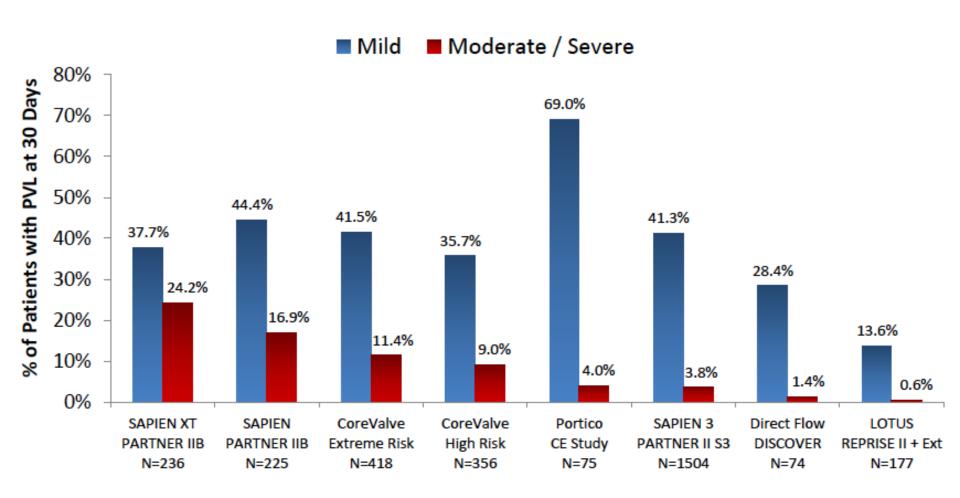
251 (70.3)

66 (18.5)

18.6±13.0

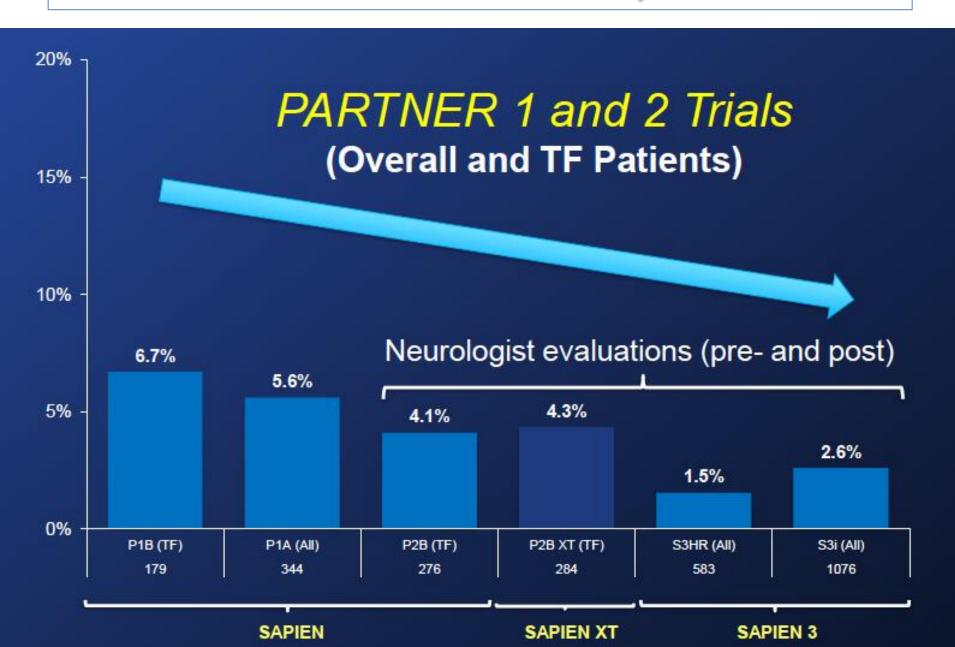

TAVI devices developed over time

2015 2007 2010 2011 2012 2013 2014 SYMETIS ACURATE SJM Portico DIRECT FLOW **EDWARDS** MEDTRONIC EDWARDS SAPIEN THV EDWARDS SAPIEN XT **BSC LOTUS** TA SAPIEN 3 **EVOLUT R** MEDICAL TF, TA TF, TA TF TF TF TF, TA TA MEDTRONIC COREVALVE SYMETIS ACURATE MEDTRONIC TF JENAVALVE NEO ENGAGER TA TA

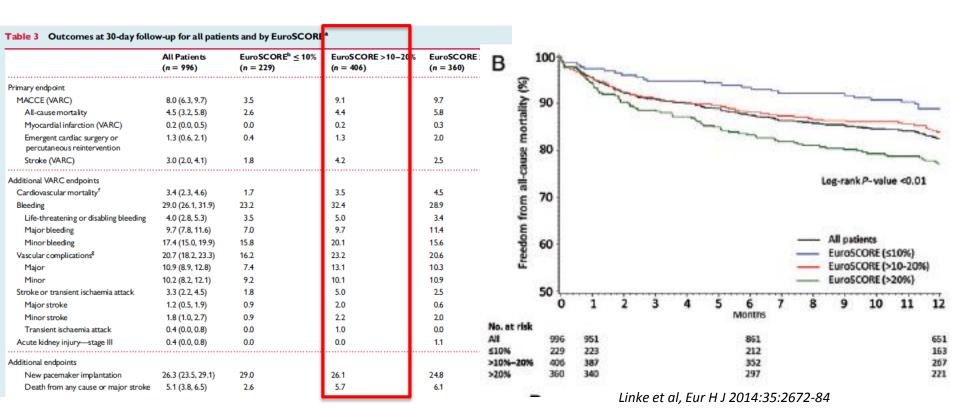

TF, TS, DA

Second generation TAVI mitigate technical issues

30-day outcome in High risk patients



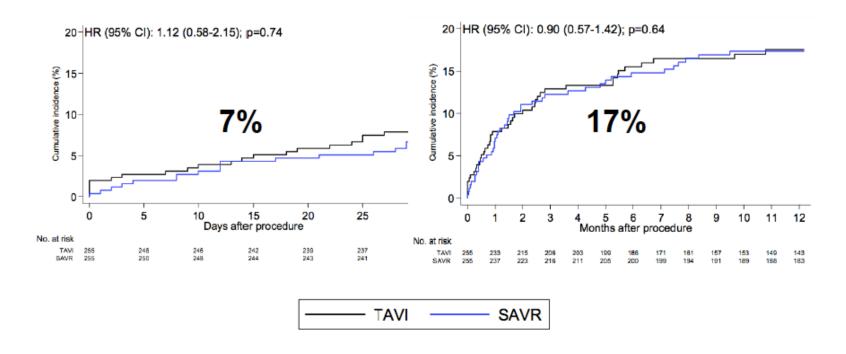
Paravalvular aortic regurgitation


¹Leon, et. al. presented at ACC 2013; ²Popma, et al., J Am Coll Cardiol 2014; 63: 1972-81; ³Adams, et al., N Engl J Med 2014; 370: 1790-8; ⁴Manoharan, et al., et. al. presented at TCT 2014; ³Kodali, et al., presented at ACC 2015; ⁶Schofer, et al., J Am Coll Cardiol 2014; 63: 763-8; ⁷Meredith, et al., presented at PCR London Valves 2014

Strokes at 30 days

TAVI in intermediate risk patients

ADVANCE Registry: 1015 patients March'10 - July'11 implanted with Corevalve Intermediate risk = Euroscore >10-20%: 30-d mortality 4.4% - Major stroke: 2%

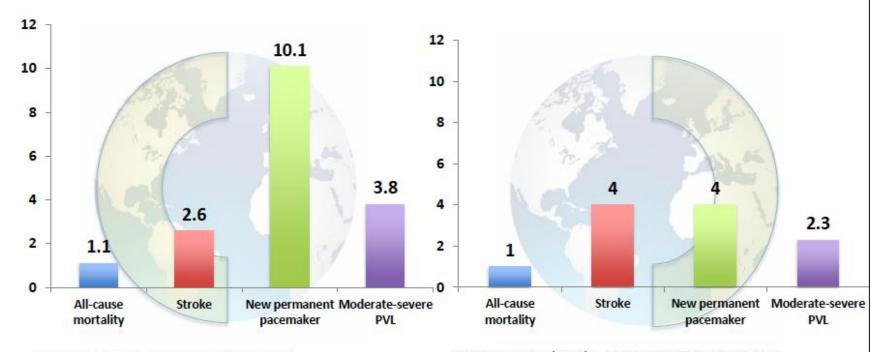


TAVI in intermediate risk patients

Matched TAVI (n=255) vs. SAVR (n=255)
STS 3-8%

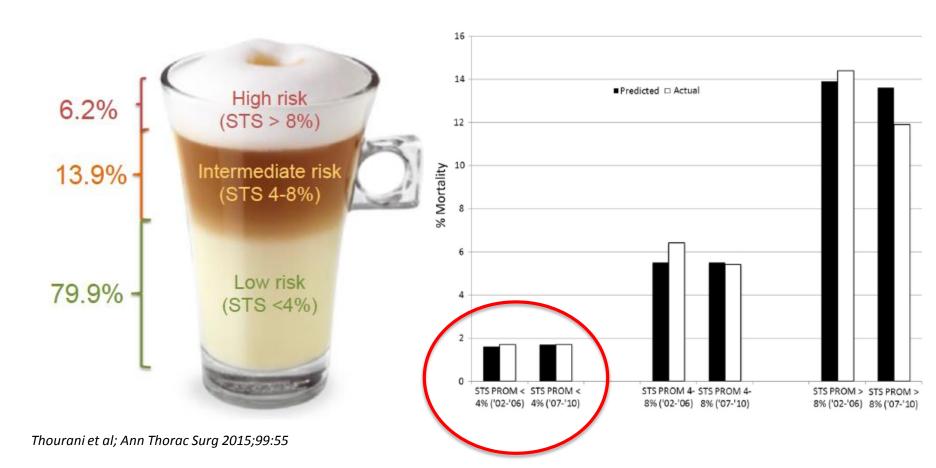
30-day All-cause mortality

1-year All-cause mortality

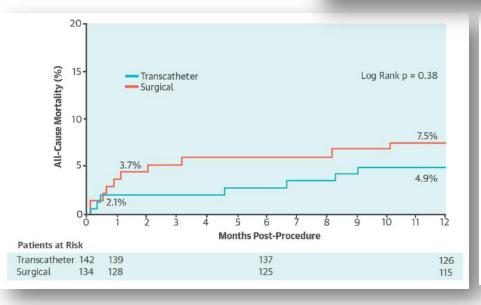


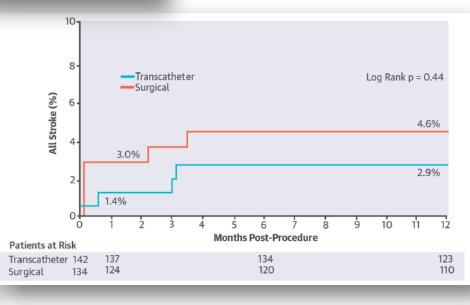
TAVI in intermediate risk patients

SAPIEN S3 Intermediate risk


N = 1076; mean STS: 5.3%

N = 101; mean STS : 5.2%


TAVI in low risk patients


STS database 2002-2010 n=141,905

NOTION: RCT trial TAVI vs SAVR in low risk patients

TABLE 1 Baseline Characteristics						
	TAVR* (n = 145)	SA VR* (n = 135)				
Age, yrs	79.2 ± 4.9	79.0 ± 4.7				
Male	78/145 (53.8)	71/135 (52.6)				
NYHA functional classification						
1	7/144 (4.9)	3/134 (2.2)				
Ш	67/144 (46.5)	70/134 (52.2)				
Ш	67/144 (46.5)	57/134 (42.5)				
IV	3/144 (2.1)	4/134 (3.0)				
STS-PROM score, %	2.9 ± 1.6	3.1 ± 1.7				
Logistic EuroSCORE, %	$\textbf{8.4} \pm \textbf{4.0}$	$\textbf{8.9} \pm \textbf{5.5}$				

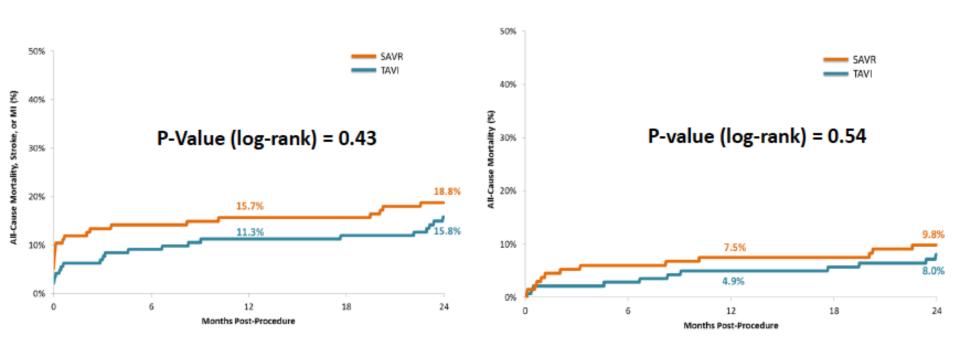

TAVI and SAVR : ≠ complications

TABLE 3 Clinical Outcomes in the As-Treated Population							
	Index Hospitalization* or 30 Days†			1 Year			
	TAVR	SAVR	p Value	TAVR	SAVR	p Value	
Major, life threatening, or disabling bleeding*	16 (11.3)	28 (20.9)	0.03				
Cardiogenic shock*	6 (4.2)	14 (10.4)	0.05				
Major vascular complications*	8 (5.6)	2 (1.5)	0.10				
Acute kidney injury stage II or III*	1 (0.7)	9 (6.7)	0.01				
All-cause death†	3 (2.1)	5 (3.7)	0.43	7 (4.9)	10 (7.5)	0.38	
Cardiovascular death†	3 (2.1)	5 (3.7)	0.43	6 (4.3)	10 (7.5)	0.25	
Neurological events†	4 (2.8)	4 (3.0)	0.94	7 (5.0)	8 (6.2)	0.68	
Stroke†	2 (1.4)	4 (3.0)	0.37	4 (2.9)	6 (4.6)	0.44	
Transient ischemic attack†	2 (1.4)	0 (0)	0.17	3 (2.1)	2 (1.6)	0.71	
MI†	4 (2.8)	8 (6.0)	0.20	5 (3.5)	8 (6.0)	0.33	
Valve endocarditis†	1 (0.7)	0 (0)	0.33	4 (2.9)	2 (1.6)	0.47	
New-onset or worsening AF†	24 (16.9)	77 (57.8)	< 0.001	30 (21.2)	79 (59.4)	< 0.001	
Permanent pacemaker implantation†	46 (34.1)	2 (1.6)	<0.001	51 (38.0)	3 (2.4)	<0.001	

NOTION trial @ 2 yrs

Mortality, stroke or MI

All-cause mortality

Advantages of TAVI Mini invasive

Short recovery period and stay lenght, no general anesthesia, no chest opening

Advantages of TAVI Haemodynamics

Larger aortic valve area and lower gradient after TAVI

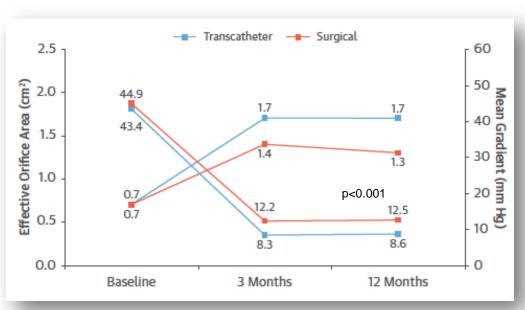
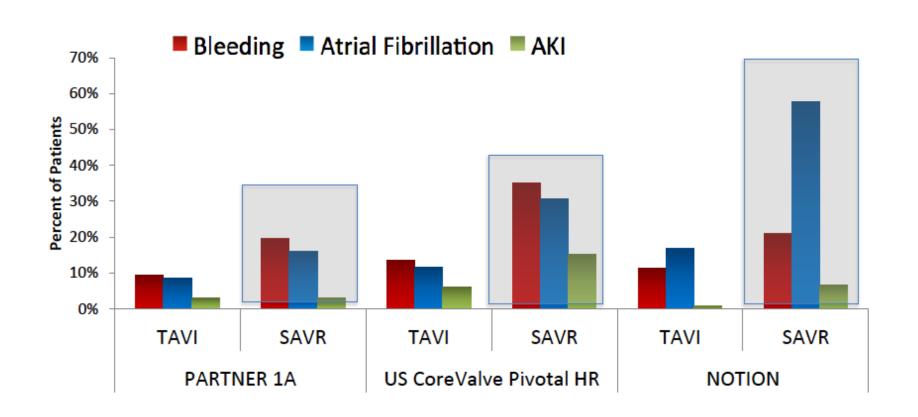
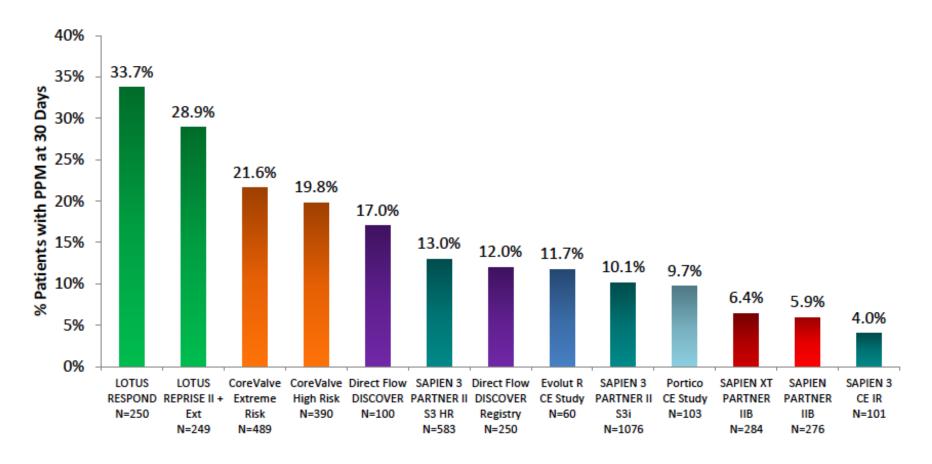
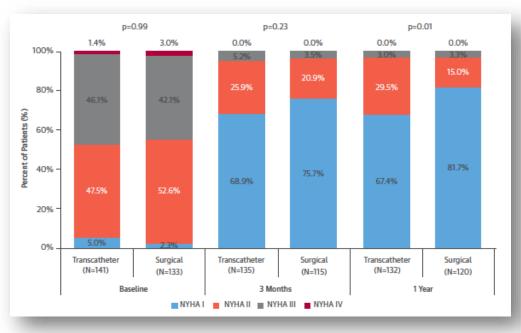



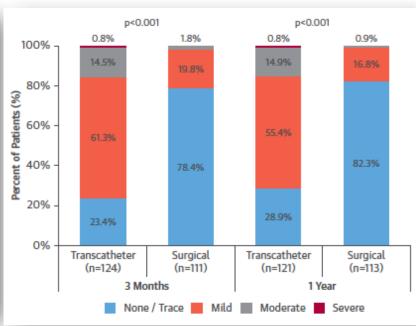
Table 2. Postprocedural Changes in AVA and Gradient


			Р.	₽.
Variable	SAVR Group	TAVI Group	ANOVA.	ANCOVA
AVA, cm ²			< 0.001	0.0009
Baseline	0.71 ± 0.17	0.64±0.18°		
Discharge	147+0.42	1.05±0.55*†		
1-y follow-up	1.39±0.40†	1.56±0.38*†		
Indexed AVA, cm ² /m ²			< 0.001	0.0003
Baseline	0.38 ± 0.09	0.36±0.10°		
Discharge	0.76±0.22†	0.92±0.32*†		
1-y follow-up	0.71±0.19†	0.87 ±0.20°†		
Mean gradient, mm Hg			0.005	0.04
Baseline	35±14	37±14		
Discharge	13±5 1	10+5*†		
1-y follow-up	14±6†	9±4"†		

Advantages of TAVI

Bleeding/Atrial fibrillation/ Acute kidney injury

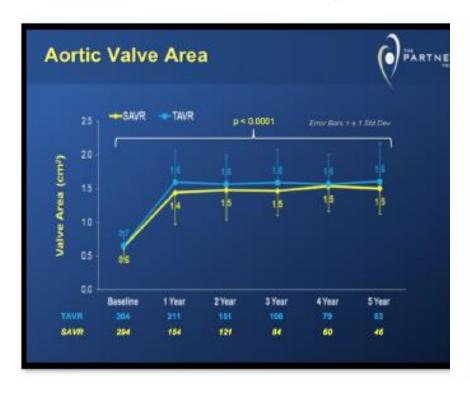

Disadvantages of TAVI: permanent pacemaker rate



¹Van Mieghem, et al., presented at EuroPCR 2015; ²Meredith, et al., presented at PCR London Valves 2014; ³Popma, et al., *J Am Coll Cardiol* 2014; 63: 1972-81; ⁴Adams, et al., *N Engl J Med* 2014; 370: 1790-8; ⁵Schofer, et al., *J Am Coll Cardiol* 2014; 63: 763-8; ⁶Kodali, et al., presented at ACC 2015; ⁷Naber, et al., presented at EuroPCR 2015; ⁸Meredith, et al., presented at ACC 2015; ⁹Kodali, et al., presented at ACC 2015; ¹⁰Manoharan, et al., et. al. presented at TCT 2014; ¹¹Leon, et. al. presented at ACC 2013; ¹²Vahanian, et al., presented at EuroPCR 2015

Disadvantages of TAVI

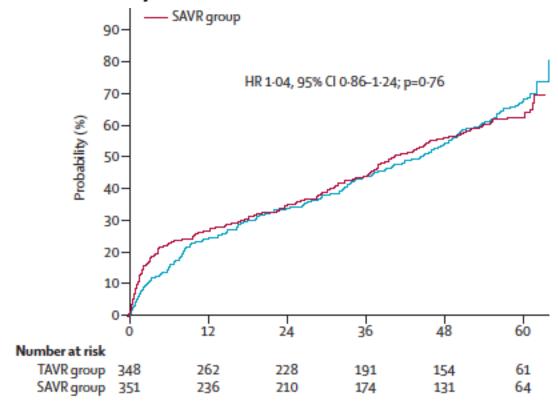
- ✓ New LBBB, new PCMK
- ✓ Major vascular complications
- **✓** PVL

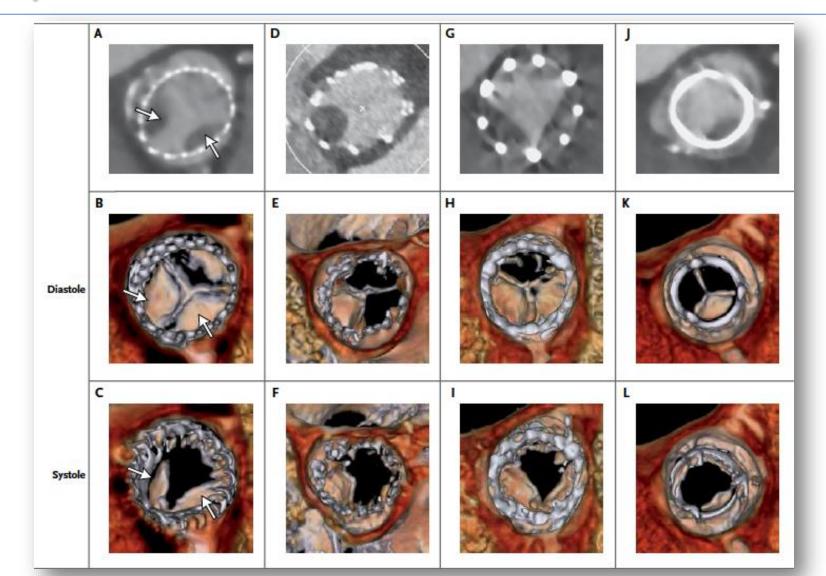


Thyregod et al, J Am Coll Cardiol 2015;65:2184-94

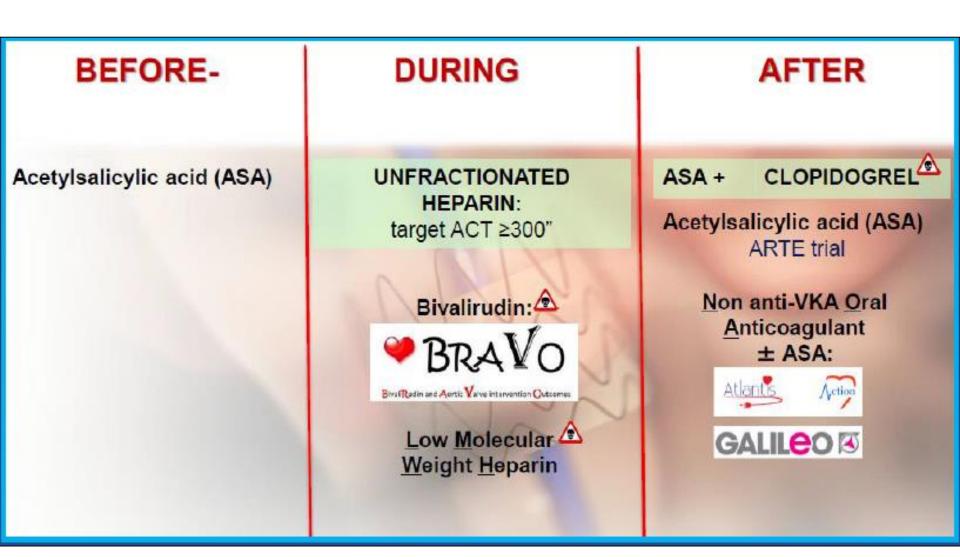
Remaining issues: durability

PARTNER 1A – 5 years


ADVANCE - 3 years



5-yr outcome


PARTNER 1A – 5 years

Remaining issues: potential thrombus on the leaflets

Remaining issues: antiplatelet/(N)OAC

TAVI in low risk patients: CONCLUSIONS

- ✓ Use of TAVI is exponential
- ✓ SAVR is a valuable therapy in low risk AS patients
- ✓ New generation TAVI mitigate technical issues
- ✓ Similar mortality in Notion RCT
- ✓ Different types of complications
- ✓ Ongoing trials : PARTNER II and SURTAVI