

Paravalvular Regurgitation is a Risk Factor Following TAVI

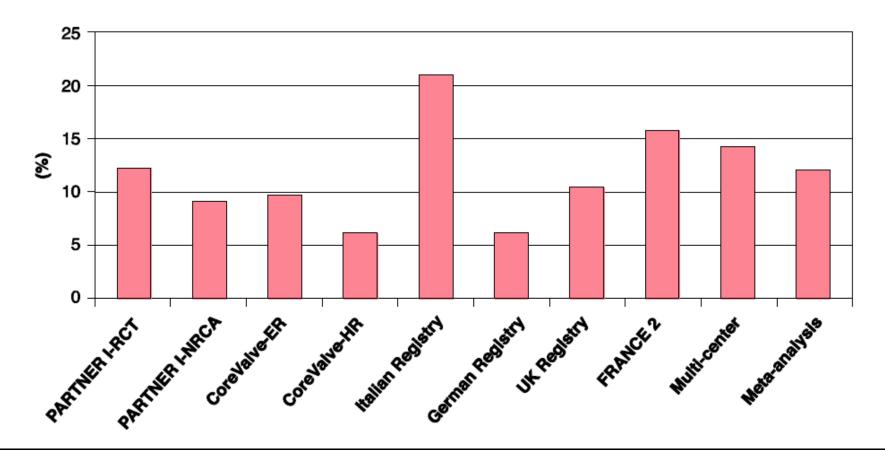
Philippe Pibarot, DVM, PhD, FACC, FESC, FASE Canada Research Chair in Valvular Heart Disease

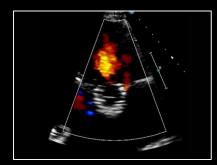
INSTITUT UNIVERSITAIRE DE CARDIOLOGIE ET DE PNEUMOLOGIE DE QUÉBEC

Disclosure Philippe Pibarot

Financial relationship with industry:

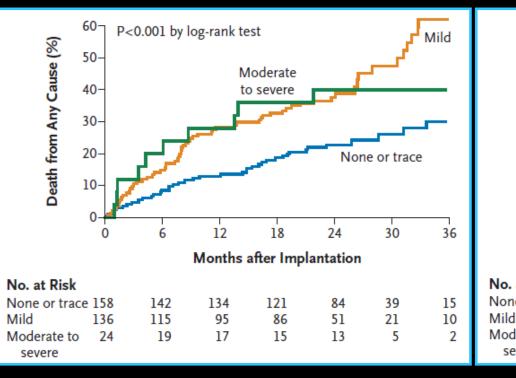
- Edwards Lifesciences: Echo CoreLab for PARTNER II -SAPIEN 3 and TAVR-UNLOAD
- V-Wave: Echo CoreLab
- Cardiac Pheonix: Echo CoreLab

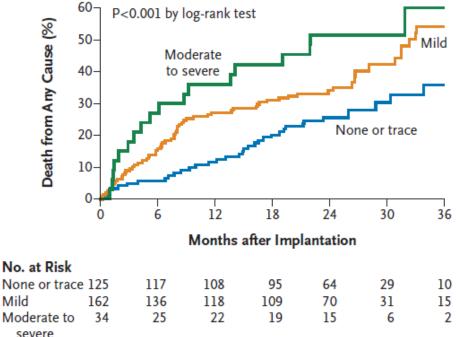

Other financial disclosure:


- Research Grants from Canadian Institutes of Health
- Research and Heart & Stroke Foundation of Quebec

Off label Use: None

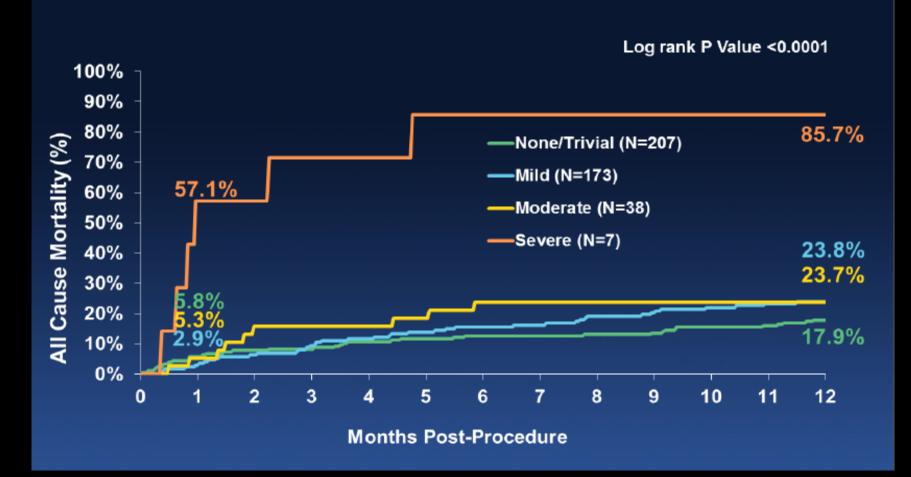
Incidence of Moderate/Severe PVR in TAVR

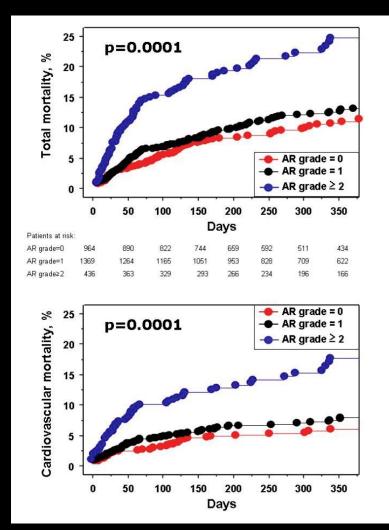



Pibarot et al. JACC CV Imaging; 8:340-360, 2015

Impact of Paravalvular Regurgitation on 2-Year Outcomes: PARTNER-I A Trial

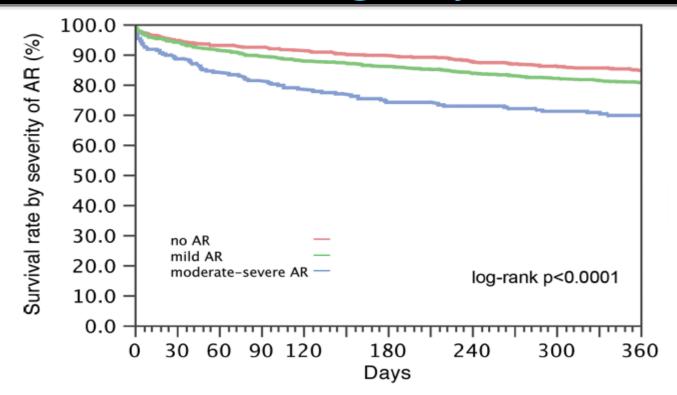
Paravalvular Regurgitation


Total (Paravalvular+Central) Regurgitation


Kodali et al. NEJM 2012;366:1686-95

Impact of AR on Mortality CoreValve Pivotal Trial

Popma et al. JACC 2014


Impact of AR Post-TAVI / France-2 Registry

n= 2769

Van Belle et al. Circulation 2014

Impact AR Post-TAVI / UK Registry

No at risk	Baseline	90 days	180 days	270 days	360 days	
Total	2434	2150	2064	1795	1540	
No AR	783	714	692	604	525	
mild AR	1398	1233	1186	1026	874	
moderate-severe AR	253	203	186	165	141	

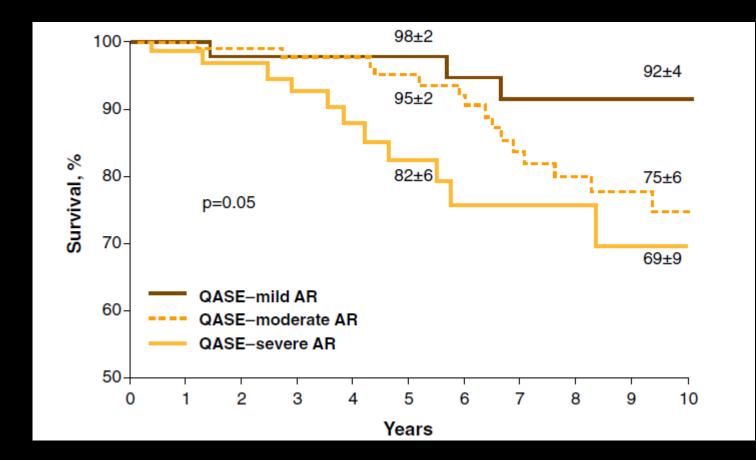
Dworakowski R, et al. Heart 2014

Impact of Moderate / Severe Aortic Regurgitation After TAVI

Meta-Analysis and Systematic Review of Literature

Impact of Moderate-Severe AR on Mortality

Study name		Statistic	s for ea	ch study			Haz	zard ra	atio a	and 95	<u>% CI</u>	
	Hazard ratio	Lower limit	Upper limit	Z-Value	p-Value							
Lemos•	4.900	1.367	17.570	2.439	0.015	1	1	1		+	-+	-
Hayashida	1.970	1.187	3.271	2.621	0.009				- 1-		-	
Amabile	1.500	0.329	6.829	0.524	0.600			-	-			-
Sinning	3.890	2.020	7.491	4.063	0.000						-	- 1
Tamburino	3.785	1.572	9.112	2.969	0.003					-	-	-
Fraccaro	2.190	1.023	4.686	2.020	0.043				H	-	_	
Kodali	2.110	1.433	3.107	3.783	0.000					-#-	2	
Moat	1.490	1.002	2.215	1.971	0.049				H	∎		
Gilard	2.490	1.909	3.248	6.728	0.000						F	
All (N=4791)	2.273	1.840	2.808	7.609	0.000	 0.1	 0.2	 0.5	 1	2	 5	 10
							Decre	eased R	lisk	Incre	ased F	lisk


Athappan et al. J Am Coll Cardiol 2013;61:1585–95

Impact of Mild AR on Mortality after TAVI: A Meta-analysis

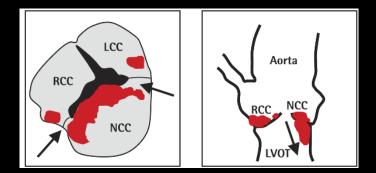
Study name	Statistics for each study					Haz	ard ra	tio a	nd 95%	% CI		
	Hazard ratio	Lower limit	Upper limit	Z-Value	p-Value							
Lemos	10.080	1.229	82.673	2.152	0.031	1	1	1	-	1	+	
Sinning	2.342	1.066	5.145	2.119	0.034				-	-	-	
Kodali	2.110	1.433	3.107	3.782	0.000					-		
Fraccaro	2.064	0.968	4.400	1.876	0.061				-		-	
Tamburino	0.780	0.499	1.218	-1.092	0.275			н	-			
All (N=1620)	1.829	1.005	3.329	1.975	0.048	0.1	0.2	0.5	1	2	5	10

Athappan et al. J Am Coll Cardiol 2013;61:1585–95

Survival Under Conservative Management After Diagnosis of Native AR

Detaint D et al. J Am Coll Cardiol Img 2008;1:1–11

Potential explanations for the Association between Mild PVR and mortality following TAVI


> Patients with mild PVR have worse baseline risk profile compared to none/trace PVR

Severity of PVR is underestimated

Some subsets of patients with severe AS may be more vulnerable to AR

Predictors of Paravalvular Regurgitation following TAVI

- > Male gender
- > NYHA Class IV
- > Atrial fibrillation
- > AR at baseline
- > MR at baseline

- More severe and asymmetric valve calcification
- Larger aortic annulus
- Smaller cover index
- > Inadequate valve positioning
- Self expending valve

Sinning et al. JACC, 2012 Haensig M, EJCTS, 2012 Ewe et al. Am J Cardiol 2011 Ubehaum et al. JACC, 2012 Sinning et al. JACC 2013

Baseline Characteristics of TAVR Patients with Paravalvular Regurgitation in the PARTNER Trial

Table 2 Baseline echocardiographic characteristics of patients by severity of paravalvular regurgitation

B aseline parameters	Severity of paravalvular regu	P-value (all groups) ^a		
	(a) None/trace (<i>n</i> = 1288)	(b) Mild (n = 925)	(c) Moderate/severe (n = 221)	
LVEDD (cm)	4.41 <u>+</u> 0.74	4.60 <u>+</u> 0.77	4.68 ± 0.74	<0.0001
LVESD (cm)	3.20 ± 0.92	3.35 ± 0.94	3.51 ± 0.92	<0.0001
Stroke volume (cc)	64.2 ± 19.6	68.5 ± 21.4	67.6 ± 25.0	0.01
Cardiac output	4.38 ± 1.41	4.62 ± 1.54	4.57 ± 1.59	0.08
LV EF (%)	53.7 ± 12.4	51.4 <u>+</u> 13.2	50.2 ± 13.9	< 0.0001
LV mass (g)	238.7 ± 74.1	260.3 ± 78.3	267.2 ± 73.6	<0.0001
LVOT diameter (cm)	1.98 ± 0.18	2.04 ± 0.18	2.06 ± 0.19	< 0.0001
Annulus diameter (cm)	21.27 ± 1.86	21.64 ± 1.83	21.91 ± 1.88	<0.001
EOA (cm ²)	0.65 <u>+</u> 0.19	0.66 ± 0.19	0.65 ± 0.19	0.25
Aortic regurgitation				
None/trace	44.7%	42.8%	34.2%	0.02
Mild	46.5%	46.8%	41.2%	0.36
Moderate/severe	8.6%	10.3%	24.4%	<0.0001
Mitral regurgitation				
None/trace	29.9%	25.8%	17.8%	0.001
Mild	50.7%	51.7%	46.1%	0.37
Moderate/severe	19.5%	22.5%	36.1%	<0.0001

Kodali et al. Eur Heart J 2014

Impact of PVR on Mortality in the PARTNER Trial

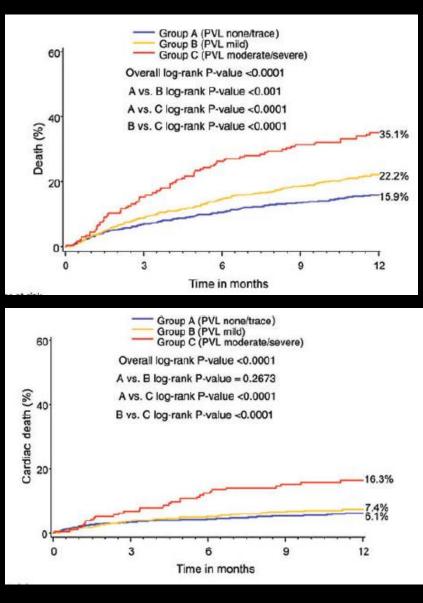


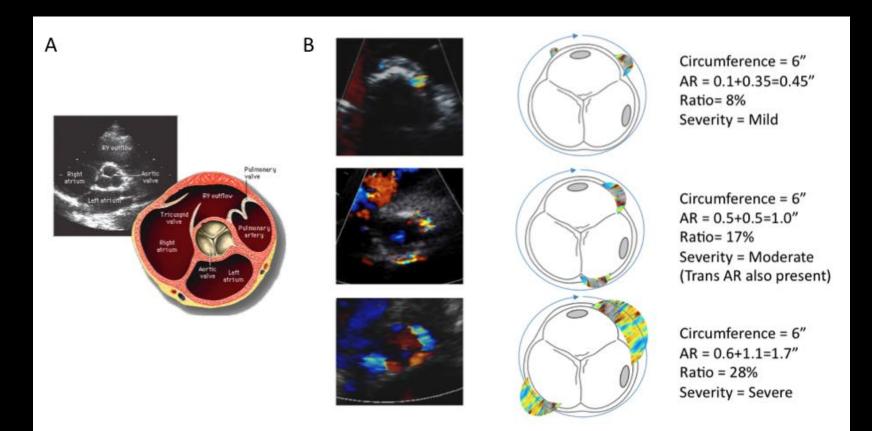
 Table 4
 Multivariable predictors of all-cause 1-year

 mortality

Multivariable analysis: baseline and procedural predictors of 1-year mortality

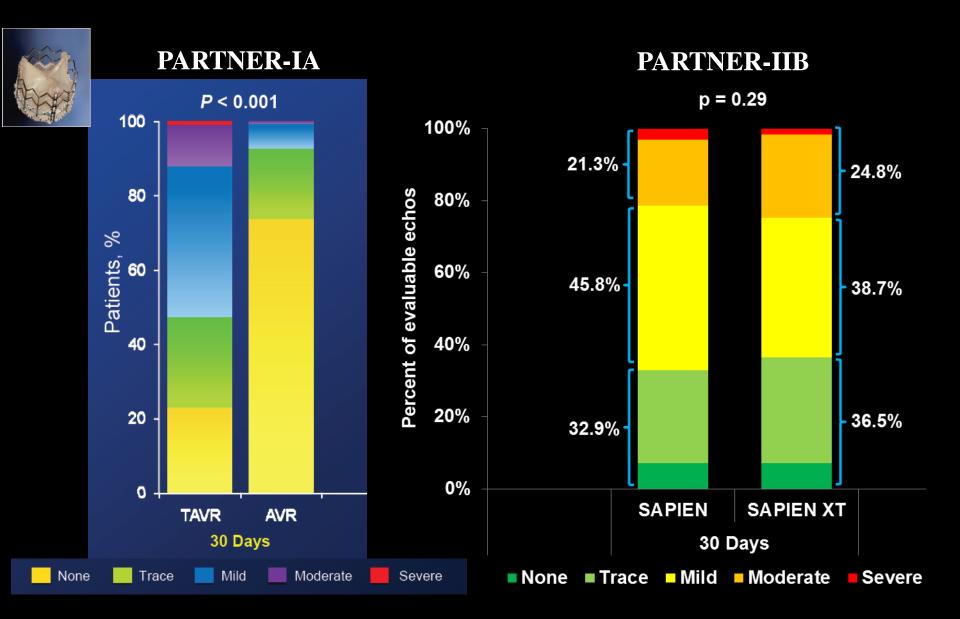
Variable	Hazard ratio	95% Confidence interval	P-value ^a
Major arrhythmia	1.41	1.14–1.75	0.002
TF vs. TA	0.73	0.59-0.91	0.005
AV annulus diameter (per 1 mm increase)	1.07	1.03–1.11	0.001
BMI (per 1 kg/m ² increase)	0.95	0.93-0.97	< 0.0001
Total distance walked (per 10 m increase)	0.97	0.96-0.98	< 0.0001
AV mean gradient (per 1 mmHg)	0.98	0.97–0.99	< 0.0001
Paravalvular regurgitation			
None/trace	Referent	-	-
Mild	1.35	1.07-1.72	0.013
Moderate/severe	2.20	1.60-3.03	< 0.0001
Renal disease (CR \geq 2)	1.35	1.04–1.74	0.023

Kodali et al. Eur Heart J 2014



European Heart Journal (2012) **33**, 2403–2418 doi:10.1093/eurheartj/ehs255

Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document[†]


	Prosthetic aortic valve regurgitation					
	Mild	Moderate	Severe			
Semi-quantitative parameters						
Diastolic flow reversal in the descending aorta—PW	Absent or brief early diastolic	Intermediate	Prominent, holodiastolic			
Circumferential extent of prosthetic valve paravalvular regurgitation (%) ^h	<10%	10–29%	≥30%			
Quantitative parameters ^c						
Regurgitant volume (mL/beat)	<30 mL	30–59 mL	≥60 mL			
Regurgitant fraction (%)	<30%	30-49%	≥50%			
EROA (cm ²)	0.10 cm ²	$0.10 - 0.29 \text{ cm}^2$	\geq 0.30 cm ²			

Grading Severity of Paravalvular Regurgitation

Bloomfield; JACC Img; 5:441–55, 2012

Total Aortic Regurgitation PARTNER I versus PARTNER II-B

Grading of Paravalvular Regurgitation by Circumferential Extent of the Jet

Mild PVL

ASE Guidelines & PARTNER II Trial:

Mild PVL <10% of the sewing ring

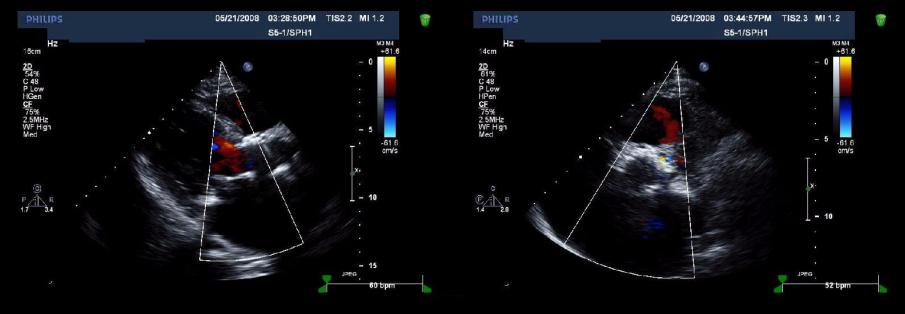
VARC 2 & PARTNER I Trial:

Mild PVL <10% of the sewing ring

Moderate PVL 10-30% of the sewing ring

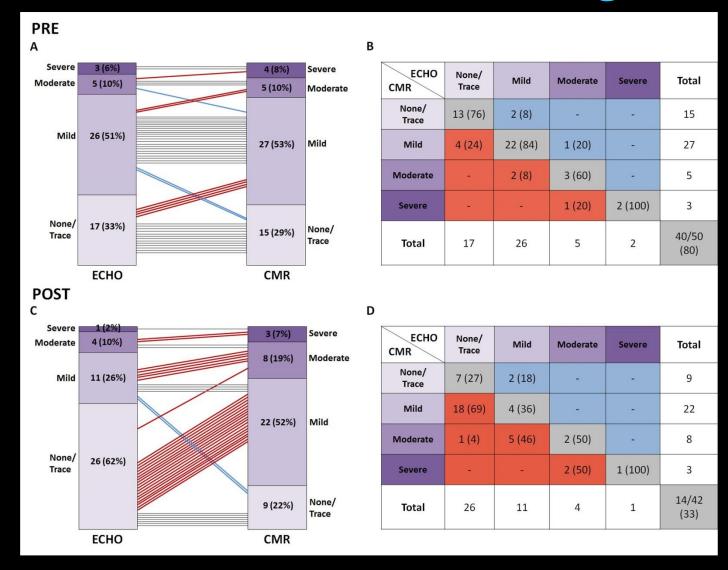
Severe PVL >30% of the sewing ring

Douglas PS et al. J Am Soc Echocardiography 2013;26(4): 348-358


Moderate PVL 10-20% of the sewing ring

Severe PVL >20% of the sewing ring

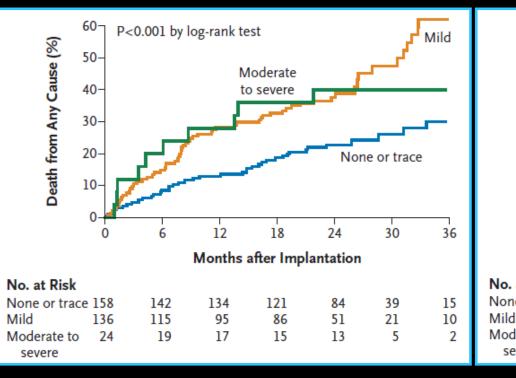
Zoghbi WA et al. J Am Soc Echocardiography 2009;22(9):975-1014

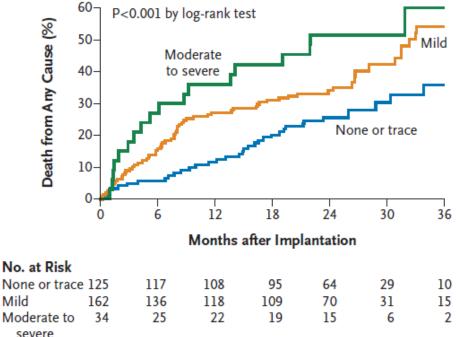

Multi-window Imaging is Key!

3-CLASS GRADING SCHEME	TRACE	MILD		MODI	SEVERE	
4-CLASS GRADING SCHEME	1	1	2	2	3	4
UNIFYING 5-CLASS GRADING SCHEME	TRACE	MILD	MILD-TO- MODERATE	MODERATE	MODERATE- TO-SEVERE	SEVERE
Structural Parameters						
• Valve stent	Usually normal	Usually normal	Normal/	Normal/	Usually	Usually
Doppler parameters (qualitative or semi-quantitative)			abnormal	abnormal	abnormal	abnormal†
• Jet features						
Extensive/wide jet origin	Absent	Absent	Absent	Present	Present	Present
Multiple jets	Possible	Possible	Often present	Often present	Usually present	Usually present
Jet path visible along the stent	Absent	Absent	Possible	Often present	Usually present	Present
Proximal Flow convergence visible	Absent	Absent	Absent	Possible	Often present	Often present
• Jet width at its origin (%LVOT diameter): color Doppler	Narrow (<5)	Narrow (5-15)	Intermediate (15-30)	Intermediate (30-45)	Large (45-60)	Large (>60)
 Jet deceleration rate (PHT, ms): CW Doppler 	Slow (>500)	Slow (>500)	Slow (>500)	Variable (200-500)	Variable (200-500)	Steep (<200)
 Diastolic flow reversal in the descending aorta: PW Doppler 	Absent	Absent or brief early diastolic	Intermediate	Intermediate	Holodiastolic (end-diast. vel.>20 cm/s)	Holodiastolic (end-diast. vel.>25 cm/s)
• Circumferential extent of PVR (%) color Doppler	<10	<10	10-20	20-30	>30	>30
Doppler parameters (quantitative)						
• Regurgitant fraction (%)	<15	<15	15-30	30-40	40-50	>50

Pibarot et al. JACC CV Imaging; 8:340-360, 2015

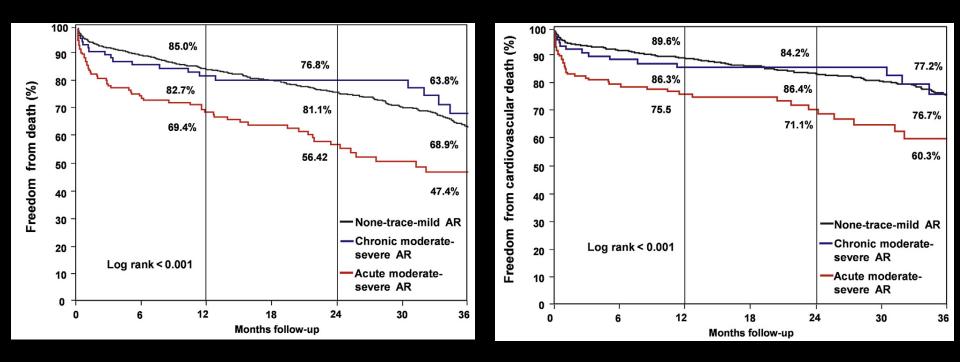
Multi-View/Multi Parametric TTE versus CMR to Assess AR Following TAVR

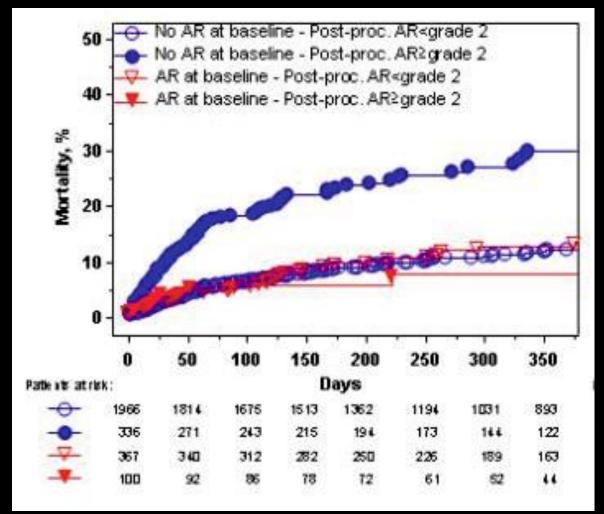



Ribeiro HB, et al. Heart, 2014

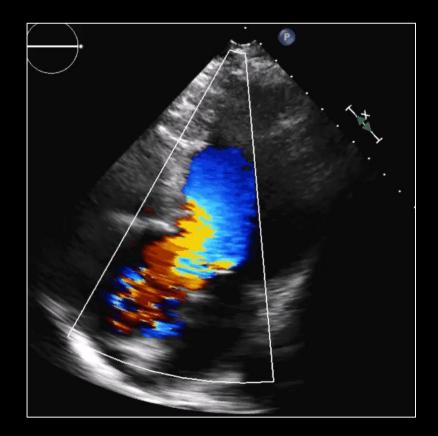
Impact of Paravalvular Regurgitation on 2-Year Outcomes: PARTNER-I A Trial

Paravalvular Regurgitation

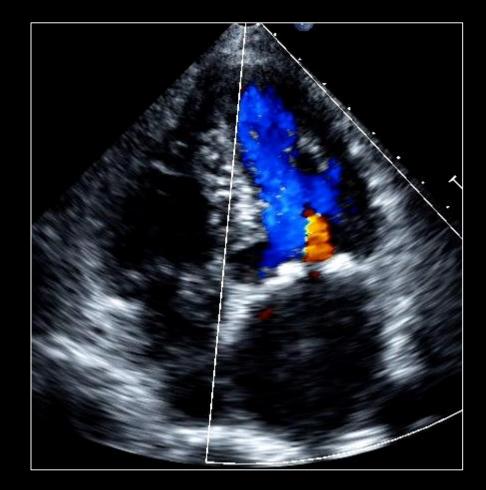

Total (Paravalvular+Central) Regurgitation


Kodali et al. NEJM 2012;366:1686-95

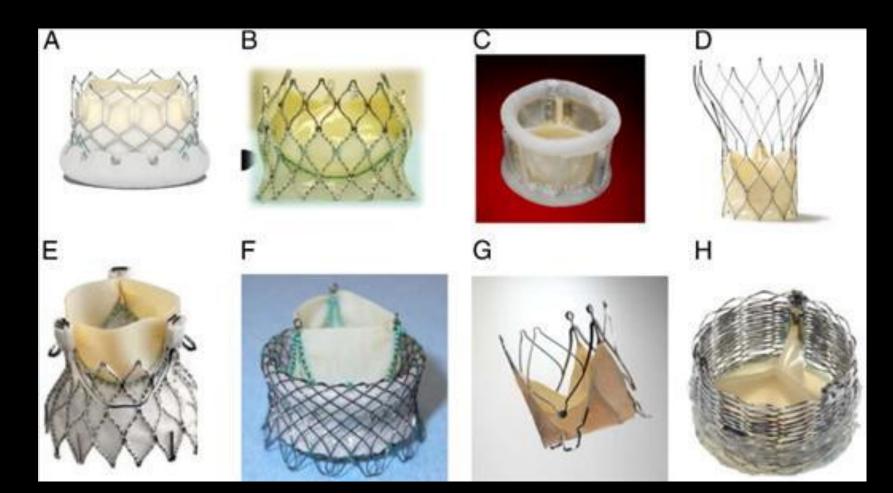
Effect of Acuteness of AR on Mortality After TAVI: Multicenter Study (1735 Patients)

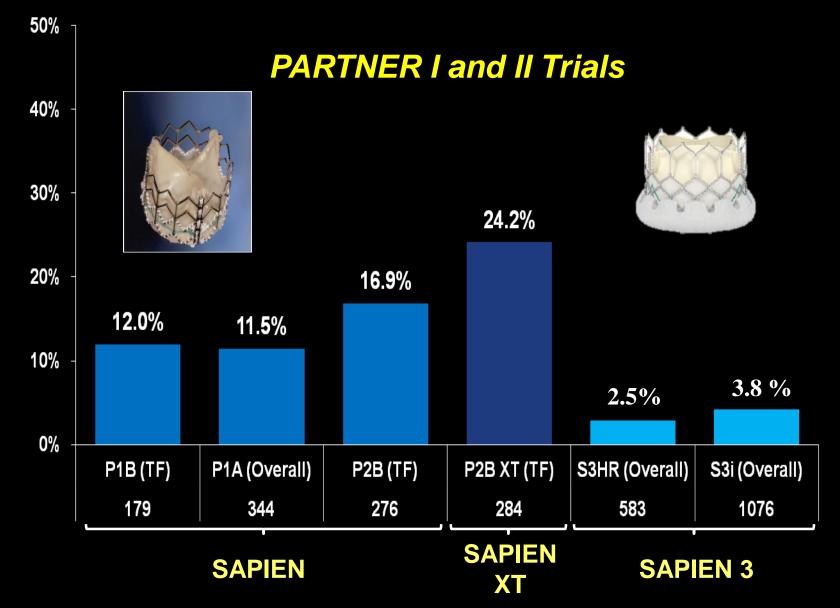

Jerez-Valero et al. J Am Coll Cardiol Intv 2014;7:1022–32

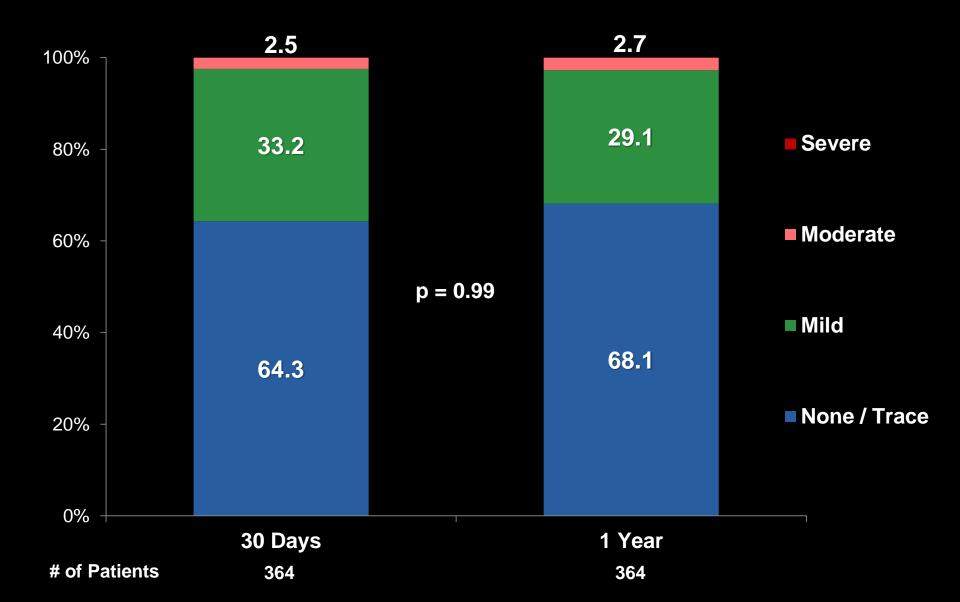
Effect of Acuteness of AR on Mortality After TAVI: France 2 Registry

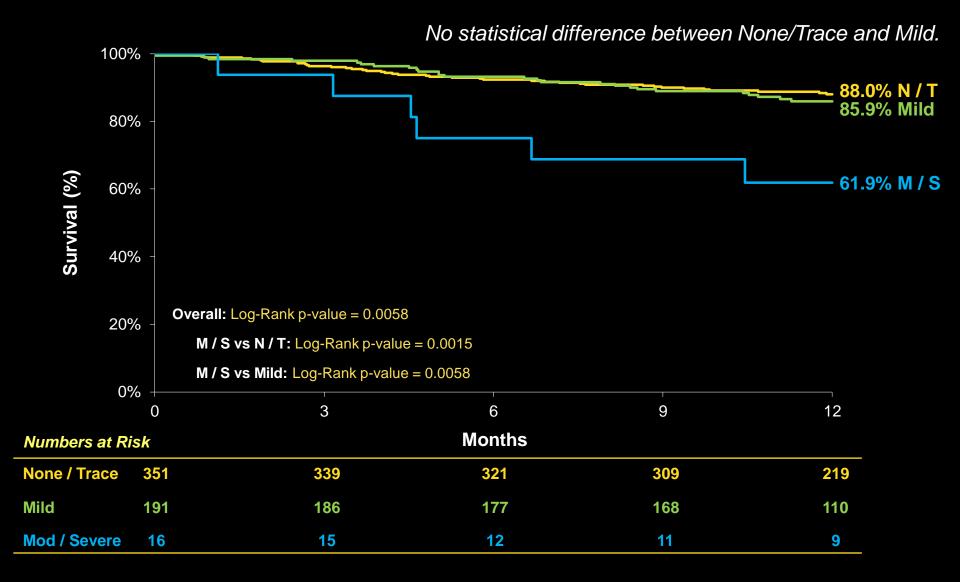


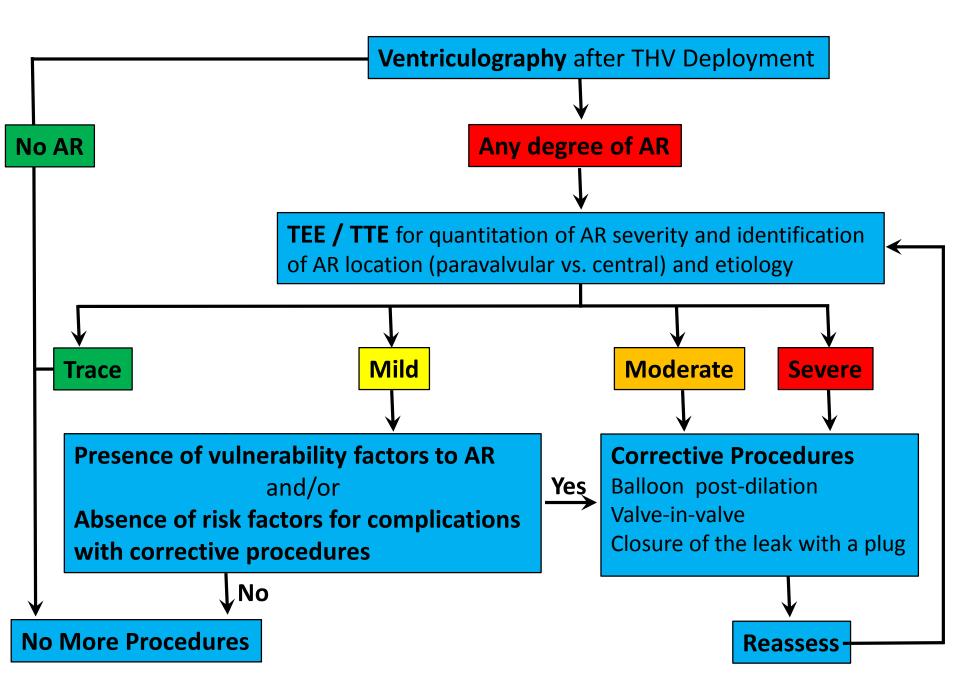
Van Belle et al. Circulation 2014


A moderate PVR may be well tolerated by a patient with pre-existing native AR


A mild PVR could be harmful in patients with pure AS

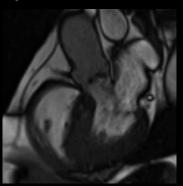

New Transcatheter Heart Valves to Prevent PVR


Moderate/Severe PVR at 30 Days Edwards SAPIEN Valves



Paravalvular Regurgitation Paired Analysis

1 Year KM Survival by 30-Day PVL



Conclusions

- Moderate/severe PVR occurs in 2-15% of patients and is an independent predictor of mortality
- Severe PVR is a powerful risk factor for mortality
- Moderate PVR is generally associated with worse outcomes but may be better tolerated in patients with pre-existing native AR

- Mild PVR is frequent (7-70%) following TAVI and is generally well tolerated
- Mild PVR may have an impact on mortality if it is underestimated or if it occurs in a patient with no pre-existing AR and/or restrictive LV physiology

Decision to perform additional corrective procedures should be individualized according to: severity of PVR, vulnerability factors to AR, and risk factors for complications

IF YOU FAIL TO PREPARE BE PREPARED TO FAIL!

Winston Churchill