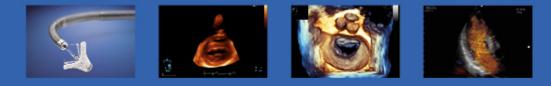


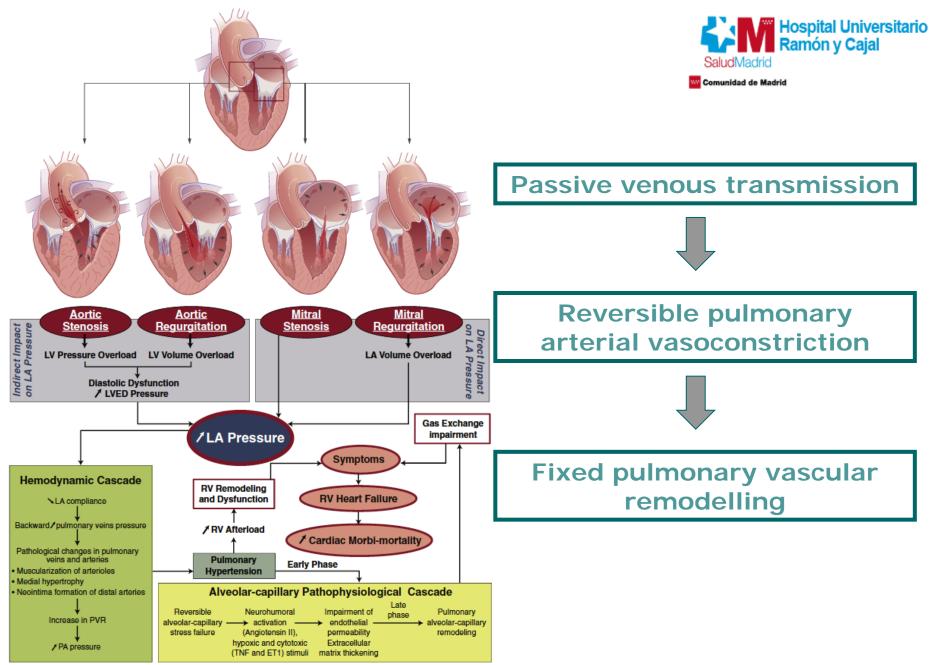
PHT following surgery for valvular heart disease

Rocio Hinojar University Hospital Ramon y Cajal, Madrid, Spain

www.eurovalvecongress.com



EUTOVOIVO March 27 - 28, 2015


Faculty disclosure

Rocio Hinojar, MD

I have no financial relationships to disclose.

www.eurovalvecongress.com

Magne J. JACC CVI 2015 Jan

	MS		MS	/MR	MR		
Variable	Preop	Postop	Preop	Postop	Preop	Postop	
SPAP (mm Hg)	54±24	42±22*	47±18	36±15*	43±16	33±13†	
Mean PAP (mm Hg)	30±13	28±147	30±12	25±11	29±11	22±91	
LVEDP (mm Hg)	11±5	12 ± 6	14±6	13 ± 7	18 ± 8	12±6†	
Heart rate (beats/min)	80 ± 19	81 ± 15	77 ± 17	74 ± 12	79±15	74 ± 14	
CI (l/min/m ²)	2.1 ± 0.5	2.3 ± 0.6	2.3 ± 0.6	2.3 ± 0.5	2.5 ± 1.0	2.7 ± 0.7	
A-Vo ₂ diff (ml/l)	5.8 ± 1.5	5.6 ± 1.1	6.0 ± 1.2	5.4 ± 1.8	5.7 ± 1.5	5.3 ± 1.6	
EDVI (ml/m ²)	79 ± 18	72 ± 24	109 ± 55	85 ± 25	117 ± 51	89±27†	
ESVI (ml/m ²)	41 ± 13	39 ± 21	54 ± 30	45 ± 22	54±42	50 ± 25	
EF	0.48 ± 0.10	0.47 ± 0.14	0.51 ± 0.13	0.49 ± 0.13	0.56 ± 0.15	$0.45 \pm 0.13^{\dagger}$	
RgV (ml)			53 ± 68	$18 \pm 22 \ddagger$	59 ± 45	11±17†	
RgV/EDV			0.37 ± 0.34	$0.19 \pm 0.20 \ddagger$	0.49 ± 0.31	0.12±0.17†	
FSV/EDV			0.37 ± 0.26	0.43 ± 0.20	0.32 ± 0.21	$0.45 \pm 0.17^{*}$	
Mean mitral gradient (mm Hg)	15 ± 7	8±3†	12±5	7±4*			
Mean orifice area (cm ²)	1.2 ± 0.4	1.8 ± 0.6 †	1.8 ± 1.2	1.9 ± 0.5			

TABLE 2. Hemodynamic and Angiographic Changes After Valve Replacement

Crawford MH. Circulation 1990; 81: 1173-1181

MITRAL VALVE DISEASE

- In mitral stenosis and mitral regurgitation PH has been largely documented (>40% and 20-30% respectively).
- PH is a major risk factor for **poor outcome** after surgery for mitral stenosis or mitral regurgitation.
- Even non-severe PH is associated with significantly worse exercise capacity and higher morbidity and mortality.
- Therefore, the normalization of PA pressure is a crucial goal of MVR.

Vincens JJ, et al. Circulation 1995 Salomon et al. Circulation 1977; Crawford MH et al. , Circulation 1990

PMC for MS and surgery for MR should be considered when systolic PAP>50 mm Hg

MR: rest PAP>50 (IIa) or SPAP≥ 60 mm Hg on exercise (IIb)MS: PMC when rest SPAP >50 mmHg(IIa)

Guidelines on the management of valvular heart disease. ESC 2012

Return to normal or near normal levels of systolic PAP is expected in most patients.

Parameter	Mitral valve replacement				
	Bioprosthetic	Mechanical	Physiological	Functional	Stenosis
No. of patients Preop. RVSP (mmHg) ⁺ Postop. RVSP (mmHg) ⁺ ΔRVSP (mmHg) ⁺ p-value	$3356 \pm 15^*47 \pm 17-9 \pm 240.04$	$20 \\ 52 \pm 12 \\ 42 \pm 6 \\ -10 \pm 14 \\ 0.003$	$4348 \pm 1442 \pm 12-6 \pm 160.01$	$7849 \pm 1445 \pm 13-3 \pm 150.07$	$5 \\ 52 \pm 16 \\ 45 \pm 16 \\ -7 \pm 18 \\ 0.44$
Preop_RVSP ≥40 mmHg Postop. RVSP ≥40 mmHg Postop. RVSP increased Postop. RVSP decreased / unchanged	29 (88) ⁺ 22 (67) 6 (18) 27 (82)	18 (90) 14 (70) 0 (0)‡ 20 (100)	30 (70) 24 (56) [§] 4 (9) 39 (91)	60 (77) 51 (65) 18 (23) 60 (77)	3 (60) 3 (60) 1 (20) 4 (80)

Walls et al. J Heart Valve Dis 2008

Persistent pulmonary hypertension is not uncommon after mitral valve surgery

advanced mitral valve disease with fixed increased resistance of the pulmonary vasculature

residual postoperative mitral stenosis in the form of mitral prosthesis-patient mismatch

Impact of Valve Prosthesis-Patient Mismatch on Pulmonary Arterial Pressure After Mitral Valve Replacement

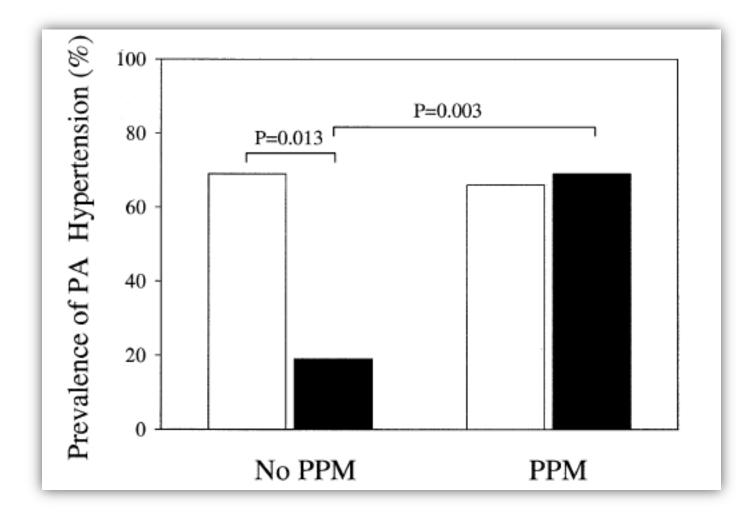
Mingzhou Li, MD, PHD, Jean G. Dumesnil, MD, FACC, Patrick Mathieu, MD, Philippe Pibarot, DVM, PHD, FACC

JACC Vol. 45, No. 7, 2005 April 5, 2005:1034-40

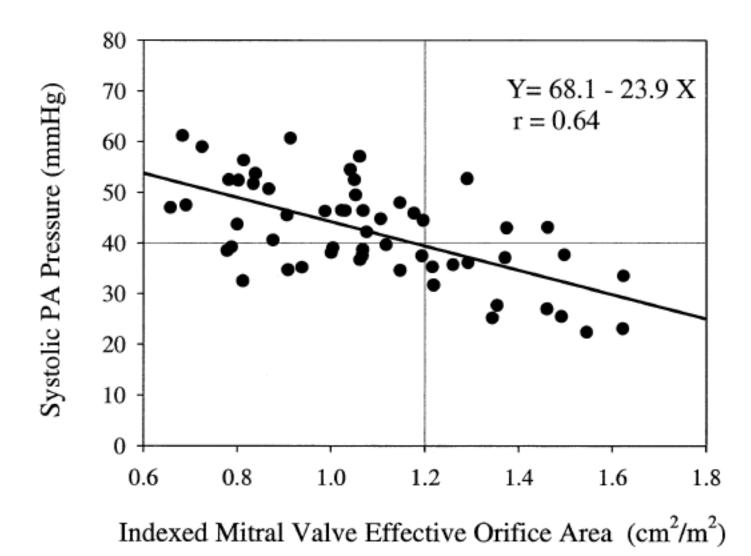
- EOA of mitral prosthetic valves are often too small.
- Residual pressure gradients across mitral prosthesis may hinder/delay the regression of LA and pulmonary pressure

EuroValve

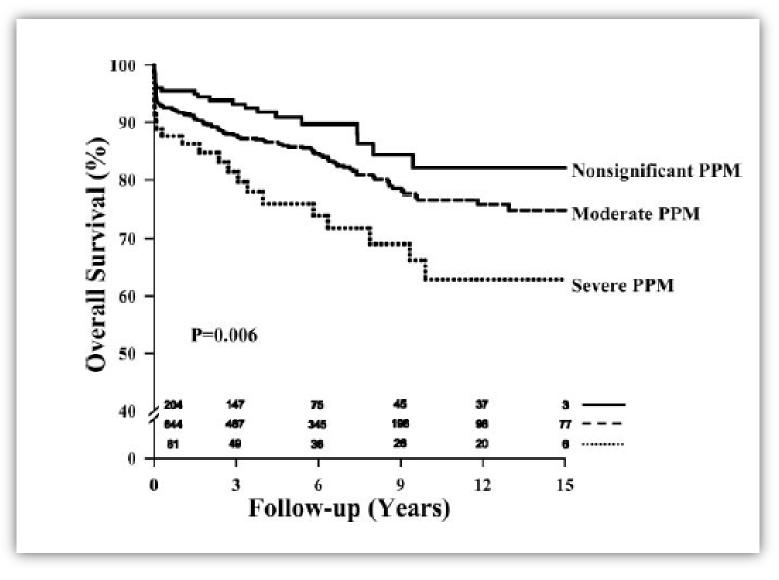
Table 1. Demographic, Preoperative	· ·				PPM:
Variables	All Patients $(n = 56)$	No PPM (n = 16)	$\left(\begin{array}{c} PPM\\ (n=40) \end{array}\right)$	p Value*	
	(11 - 50)	(n = 10)	(n = 40)	value	$EOA \le 1.2 \text{ cm}^2/\text{m}^2$
Demographic data					
Gender				NS	
Female	36 (64%)	10 (63%)	26 (65%)		Small prostbasis / < 27
Male	20 (36%)	6 (38%)	14 (35%)		Small prosthesis (< 27
Age (yrs)	65 ± 12	63 ± 14	66 ± 11	NS	mm) in 52% of patients
Body surface area (m ²)	1.72 ± 0.17	1.64 ± 0.18	1.75 ± 0.16	0.03	
Preoperative data					
Predominant valvular dysfunction				NS†	
Mitral stenosis	23 (41%)	8 (47%)	15 (36%)		
Mitral regurgitation	24 (43%)	5 (33%)	19 (48%)		
Mixed mitral valve dysfunction	9 (16%)	3 (20%)	6 (15%)		
Coronary artery disease	12 (21%)	2 (13%)	10 (25%)	NS†	
Diabetes	4 (7%)	1 (6%)	3 (8%)	NS†	
Systemic arterial hypertension	17 (30%)	1 (6%)	16 (40%)	0.02†	
Pulmonary arterial hypertension	32/48 (67%)	11/16 (69%)	21/32 (66%)	NS	
Operative data					
Type of prosthesis				NS†	
Mechanical prosthesis	47 (84%)	14 (88%)	33 (83%)		
Bioprosthesis	9 (16%)	2 (13%)	7 (18%)		
Prosthesis size (mm)			*	0.001†	
25	7 (13%)	2 (13%)	5 (13%)		
27	22 (39%)	1 (6%)	21 (53%)		
29	15 (27%)	7 (44%)	8 (20%)		
31	10 (18%)	5 (31%)	5 (13%)		
33	2 (4%)	1 (6%)	1 (2%)		
Total chordal preservation	5 (9%)	2 (13%)	3 (8%)	NS	
Posterior chordal preservation	18 (32%)	3 (19%)	13 (33%)	NS	
Left atrial appendage obliteration	13 (23%)	4 (25%)	9 (23%)	NS†	
Maze procedure	5 (9%)	2 (13%)	3 (8%)	NS†	
Coronary artery bypass graft	11 (20%)	1 (6%)	10 (24%)	NS†	


EuroValve

	All Patients	No PPM	PPM	
Variables	(n = 56)	(n = 16)	(n = 40)	p Value
Atrial fibrillation	22 (39%)	7 (44%)	15 (38%)	NS
End-diastolic LV diameter (mm)	49 ± 7	50 ± 7	49 ± 7	NS
End-systolic LV diameter (mm)	34 ± 9	34 ± 9	33 ± 8	NS
End-diastolic interventricular septal thickness (mm)	10 ± 2	10 ± 1	10 ± 2	NS
End-diastolic LV posterior wall thickness (mm)	10 ± 2	10 ± 3	11 ± 2	NS
End-systolic LA diameter (mm)	51 ± 11	52 ± 14	50 ± 10	NS
Mitral valve EOA (cm ²)	1.8 ± 0.4	2.3 ± 0.3	1.7 ± 0.3	< 0.001
Indexed mitral valve EOA (cm ² /m ²)	1.1 ± 0.3	1.4 ± 0.1	1.0 ± 0.2	< 0.001
Peak transmitral gradient (mm Hg)	11 ± 4	8 ± 2	12 ± 4	< 0.001
Mean transmitral gradient (mm Hg)	4 ± 2	3 ± 1	4 ± 2	0.001
Net atrioventricular compliance (ml/mm Hg)	<u>4.1 ± 1.7</u>	5.3 ± 1.6	3.6 ± 1.6	0.001
Systolic PA pressure (mm Hg)	42 ± 10	34 ± 8	46 ± 8	< 0.001
PA hypertension (systolic PA pressure >40 mm Hg)	30 (54%)	3 (19%)	27 (68%)	0.001†

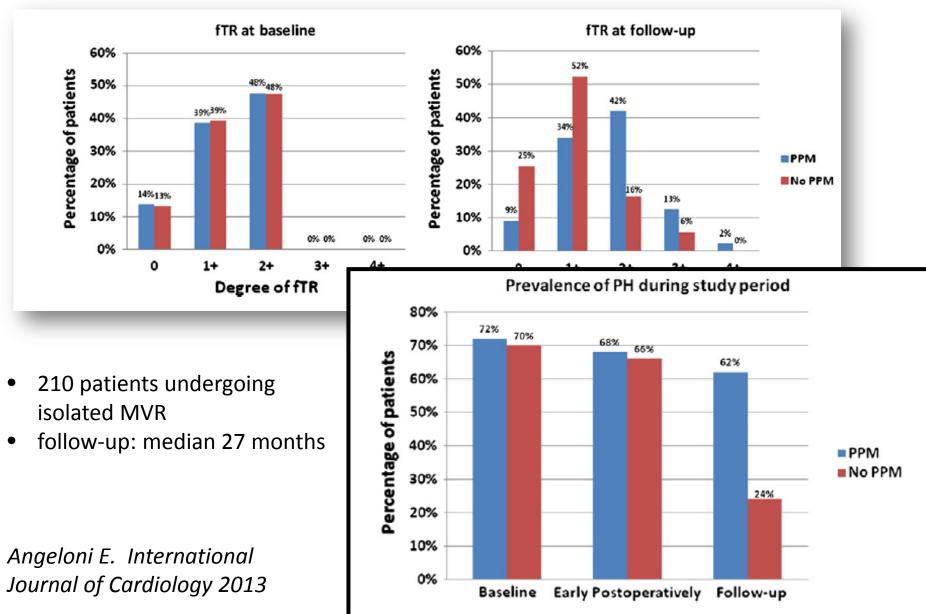


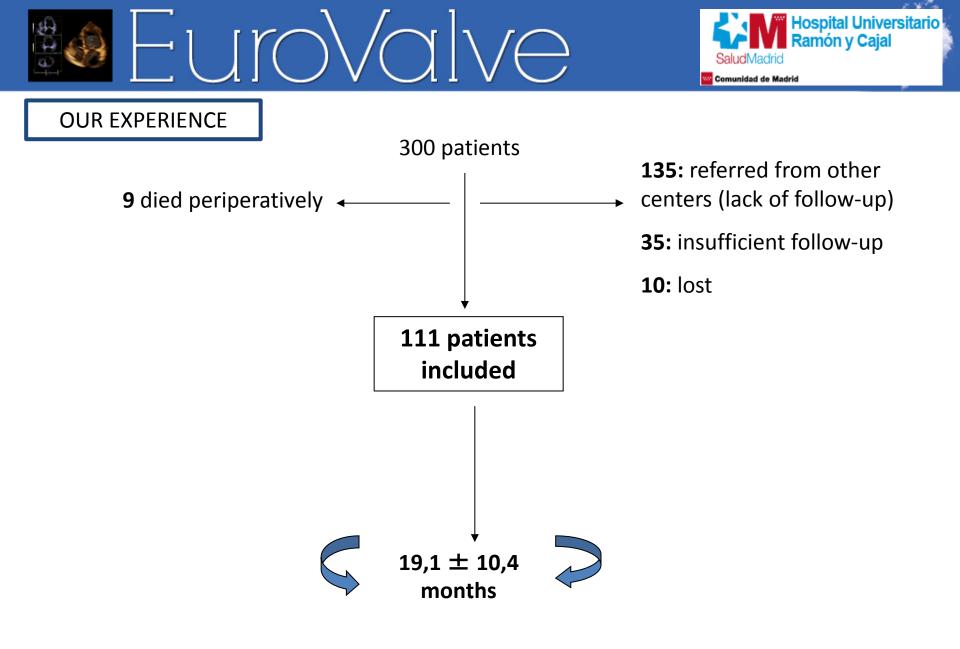
Impact of Prosthesis-Patient Mismatch on Survival After Mitral Valve Replacement


Julien Magne, MSc; Patrick Mathieu, MD, FRCPC; Jean G. Dumesnil, MD, FRCPC; David Tanné, Eng; François Dagenais, MD, FRCPC; Daniel Doyle, MD, FRCPC; Philippe Pibarot, DVM, PhD

Circulation. 2007;115:1417-1425

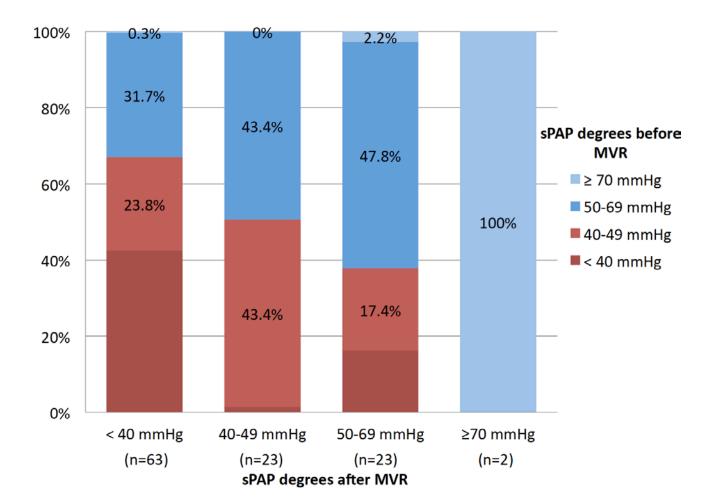
- The impact of PPM on mortality in patients undergoing mitral valve replacement.
- 929 consecutive patients.
- The mean follow-up was 6.3 ± 4.5 years
- PPM moderate > 0.9 and $\leq 1.2 \text{ cm}^2/\text{m}^2$ PPM severe $\leq 0.9 \text{ cm}^2/\text{m}^2$



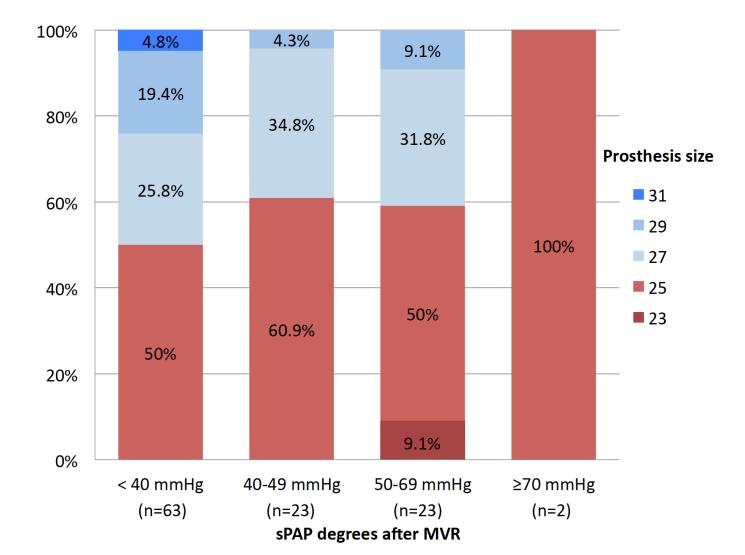


Briongos Figuero S, ESC 2014

Age (years) (SD)	Total population (n=111) 69.7 (8.6)	No preoperative PH (n=32) 67.8 (10.3)	Preoperative PH (n=79) 69.2 (9.0)	p value 0.444	
Predominant m Regurgitati Stenosis Mixed dysf TR severity ≤2 ≥3 	on		40 (36% 44 (39.6 27 (24.3 73 (65.8 38 (34.2 78.9%	5%) 5%) 5%)	Comunidad de Madri
Average I VEF (%)(SD) Mean sPAP (m Degrees of sPA • < 40 mmH • 40-50 mm • 51-69 mm • ≥ 70 mmH	AP, n (% g Hg Hg	,	32 (28.8 29 (26.2 41 (36.9 9 (8.1%	3%) 2%) 9%)	→ 45%
Prosthesis size • 23 • 25 • 27 • 29 • 31	, n (%)		2 (1.8%) 58 (53.2 31 (28.4 15 (13.5 3 (2.7%)	2%) 1%) 5%)	



SaludMadrid Hospital Universitario


Change in sPAP after Surgery

The proportion of patients with PH was reduced from 71.2% to 43.2% (n=48) after MVR

	No Persistent-PH (n=63)	Persistent-PH (n=48)	p value
Prosthesis size, n (%) • 23 • 25 • 27 • 29 • 31	0 (0%) 31 (53.4%) 16 (51.6%) 12 (80%) 3 (100%)	2 (100%) 27 (46.6%) 15 (48.4%) 3 (20%) 0 (0%)	0.027

Clinical implications I

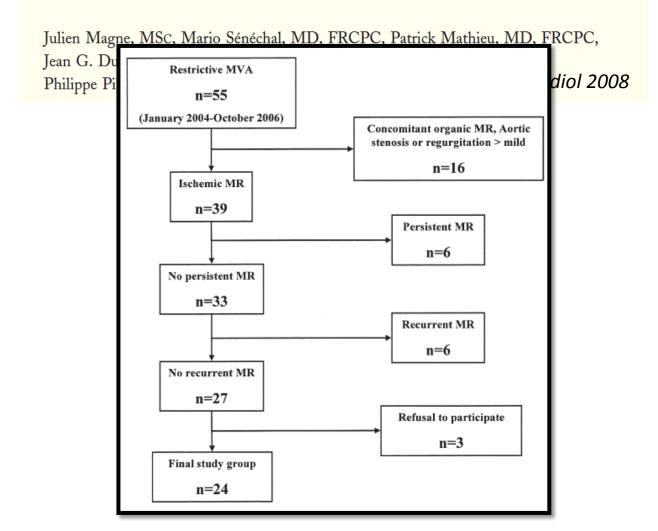
1. Persistent PH is frequent after MVR and strongly associated with the presence of valve PPM.

Avoid PPM by using a prospective strategy at the time of operation.

- MV reparation
- in MVR use the largest EOA
- concomitant tricuspid valve annuloplasty in patients with pre-existing functional TR in whom PPM is anticipated

Clinical implications II

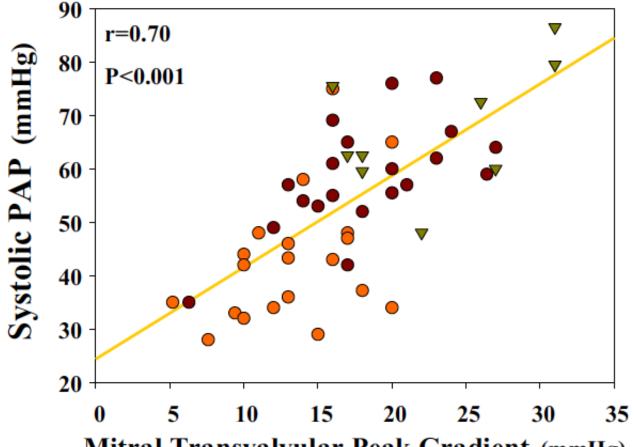
2. Persistent PH after MVR is associated with the **degree of PH before surgery.**



- More severe and chronic left heart disease.
- In the absence of a class I indication, it is not clear the optimal time for surgery.
 This may lead clinicians to overlook the prognostic value of PH or TR, postponing an earlier timing for surgery.

Restrictive Annuloplasty for Ischemic Mitral Regurgitation May Induce Functional Mitral Stenosis

1 Iro/O $\backslash \bigcirc$


Table 2

Comparison of Resting and DSE Among the Control Group (n = 20) and the MVA Group (n = 24)

		Control Grou	ıp (n = 20)	MVA G	aroup (n = 24)	
	Variables	Rest	DSE	Rest	DSE	
	LV geometry					
	LVED diameter, mm	46 ± 7	39 ± 6*	55 ± 6 †	50 ± 9*†	
	LVES diameter, mm	28 ± 9	27 ± 8	42 ± 9 †	39 ± 12†	
	LVED indexed diameter, mm/m ²	27 ± 4	21 ± 7*	30 ± 5	29 ± 7 *	
	LVES indexed diameter, mm/m ²	18 ± 5	12 ± 8	24 ± 6	22 ± 7	
	LV function					
	LV ejection fraction, %	45 ± 11	$55 \pm 13*$	$\textbf{43} \pm \textbf{11}$	56 ± 13*	
	Net atrioventricular compliance, ml/mm Hg	9.2 ± 6	6.2 ± 4	$\textbf{3.3} \pm \textbf{1.2} \textbf{\dagger}$	$\textbf{3.2} \pm \textbf{1.2}$	
	LV stroke volume, ml/beat	$\textbf{58} \pm \textbf{13}$	67 ± 24*	$67 \pm 14 \mathbf{\dagger}$	80 ± 18*†	
	Heart rate, beats/min	76 ± 19	$\textbf{123} \pm \textbf{15*}$	$\textbf{66} \pm \textbf{11}\textbf{\dagger}$	99 ± 20*†	
	Cardiac output, l/min	$\textbf{4.3} \pm \textbf{1.3}$	8.3 ± 3.3*	$\textbf{4.6} \pm \textbf{1.2}$	$7.8 \pm 1.6*$	
	Diastolic filling time, ms	370 ± 170	204 ± 73*	476 ± 143†	368 ± 128*†	
/ li	tral valve hemodynamics					
	Effective orifice area, cm ²	2 .9 ± 1	1 4.2 ±	± 1.6 *	1.5 ± 0.3 †	
	Indexed effective orifice area, cm ² /m ²	1 .7 ± 0	.5 2.4 ±	± 1 *	$0.8\pm0.2\dagger$	
	Mitral peak gradient, mm Hg	4 ± 1	. 6 ±	± 3*	13 ± 4 †	
	Mitral mean gradient, mm Hg	2 ± 1	. 3 ±	± 1 *	6 ± 2†	
M	R jet vena contracta width, mm‡	0.1 ± 0	.1 0 ±	± 0†	$\textbf{0.8} \pm \textbf{0.9}$	
Sy	stolic pulmonary arterial pressure, mm Hg	27 ± 8	38 ±	± 11 *	42 ± 13†	

Mitral Transvalvular Peak Gradient (mmHg)

	$ro\sqrt{c}$		\bigcirc		SaludMadrid	ital Unive ón y Caja	versitario al
	Table 2. Postoperative Echoc	cardiographic Mer	asurements			/	
Katiana a C	Variables		All Cases (n=108)	Physio 24 mm (n=66)	Physio 26 mm (n=42)	P Value*	('
Kainuma S. Circulation 2011	Geometric orifice area, cm ²		hi 1927	2.74	3.25		('
Circulation 2011	Indexed GOA, cm ² /m ²		1.80±0.22	1.72±0.20	1.93±0.19	<0.001	
Mitral mean gradient, mm Hg		2.9±1.1	3.1	.1±1.1	2.6±1.1	_	0.01
<5 mm Hg		98 (91%)	58	8 (88%)	40 (95%)		NS
≥5 mm Hg		10 (9%)	8	3 (12%)	2 (5%)		Ţ
Mitral valve EOA, cm ²		2.4±0.4	2.	.3±0.4	2.6±0.3		< 0.001
≥1.5 cm ²		108 (100%)	66	6 (100%)	42 (100%)		NS
<1.5 cm ²		0 (0%)	0) (0%)	0 (0%)		
Indexed EOA, cm ² /m ²		1.51±0.32	1.48	8±0.34	1.54±0.27		NS
>1.2 cm ² /m ²		85 (79%)	48 ((73%)	37 (88%)		NS
>0.9 to 1.2 cm ² /m ²		21 (19%)	17 ((26%)	4 (10%)		
\leq 0.9 cm ² /m ²		2 (2%)	1 ((1%)	1 (2%)		
Quatella DAD, mm Ug	<40 mm Ha	00+0	82 (76%)	51 (77%)	31 (74%)		MC
Systolic PAP, mm Hg		32±8		31±9‡	32±6‡		NS
Not determined†		9 (8%)	5	5 (8%)	4 (10%)		NS
<40 mm Hg		82 (76%)	51	1 (77%)	31 (74%)		
40–60 mm Hg		17 (16%)	10	0 (15%)	7 (17%)		
					0.0000		
>60 mm Hg	Kesidual mitral regurgitation, 0/1+/2	0 (0%)	66/34/8/0/0	0 (0%) 40/22/4/0/0	0 (0%)		

Table 4. Preoperative and Postoperative Hemodynamic Measurements

	Physio No.	24 (n=32)	Physio No. 26 (n=26)				
Variables	Preop	Postop	Preop	Postop	Group	Time	Group-Time
LV end-diastolic volume index, mL/m ²	135±35	109±35	150±47	126±49	NS	<0.001	NS
LV end-systolic volume index, mL/m ²	101±30	78±33	113±44	90±48	NS	<0.001	NS
LV ejection fraction, %	26±7	30±12	26±8	31±12	NS	0.002	NS
LV systolic pressure, mm Hg	115±21	121±14	123±21	124±24	NS	NS	NS
LVEDP, mm Hg	17±6	9±3	17±7	11±3	NS	< 0.001	NS
PCWP, mm Hg	21±6	13±3	21±8	13±3	NS	< 0.001	NS
Mitral gradient (=mean PCWP-LVEDP), mm Hg		3.3±1.4		2.6±1.0*			
Systolic PAP, mm Hg	46±13	34±9	46±16	34±9	NS	< 0.001	NS
<40 mm Hg	10 (31%)	24 (75%)	11 (42%)	19 (73%)			
40–60 mm Hg	19 (60%)	8 (25%)	10 (38%)	7 (27%)			
>60 mm Hg	3 (9%)	0 (0%)	5 (19%)	0 (0%)			
Mean PAP, mm Hg	32±7	21±6	33±9	22±6	NS	< 0.001	NS
Right atrial pressure, mm Hg	8±4	8±3	7±4	8±2	NS	NS	NS
Heart rate, beats/min	78±11	79±13	76±15	81±10	NS	NS	NS
Cardiac index, L/min/m ²	2.7±0.7	2.9±0.7	2.3±0.6	2.8±0.6	NS	< 0.001	0.02
Stroke volume index, mL/m ²	36±11	38±10	31±9	35±5	NS	0.02	NS
PVR, dyne \cdot s \cdot cm ⁻⁵	235±73	150±75	250±71	156±67	NS	< 0.001	NS
SVR, dyne \cdot s \cdot cm ⁻⁵	1470±460	1370±440	1620±400	1220±250	NS	<0.001	0.02

Table 5. Determinants of Postoperative Catheter-Measured Systolic PAP 1 Month After RMA

	Uni	variate	Multivariate		
Variables	ρ	P Value	SPRC	P Value	
Preop echocardiographic parameters (n=108)					
LVEDD, mm		NS			
LVESD, mm		NS			
LV ejection fraction, %		NS			
LA dimension, mm	0.35	0.007	0.23	0.009	
RVEDD, mm		NS			
Systolic PAP, mm Hg	0.54	< 0.001			
Preop volume and function parameters (n=97)					
LVEDVI, mL/m ²		NS			
LVESVI, mL/m ²		NS			
LV ejection fraction, %		NS			
Preop hemodynamic parameters (n=75)					
LVSP, mm Hg		NS			
LVEDP, mm Hg	0.26	0.08			
PCWP, mm Hg	0.28	0.06			
Systolic PAP, mm Hg	0.33	0.02			

There was no difference in freedom from adverse cardiac events between patients with an indexed EOA of >1.2 cm^2/m^2 versus $\leq 1.2 cm^2/m^2$

Postop hemodynamic parameters (n=58)				
LVSP, mm Hg		NS		
LVEDP, mm Hg	0.56	<0.001	0.51	<0.001
PCWP, mm Hg†	0.70	<0.001		
Mitral gradient (mean	0.44	< 0.001		
PCWP-LVEDP), mm Hg				
Postop hemodynamic parameters (n=58)				

parameters (n=58)				
LVSP, mm Hg		NS		
LVEDP, mm Hg	0.56	< 0.001	0.51	< 0.001
PCWP, mm Hg†	0.70	< 0.001		
Mitral gradient (mean PCWP—LVEDP), mm Hg	0.44	<0.001		

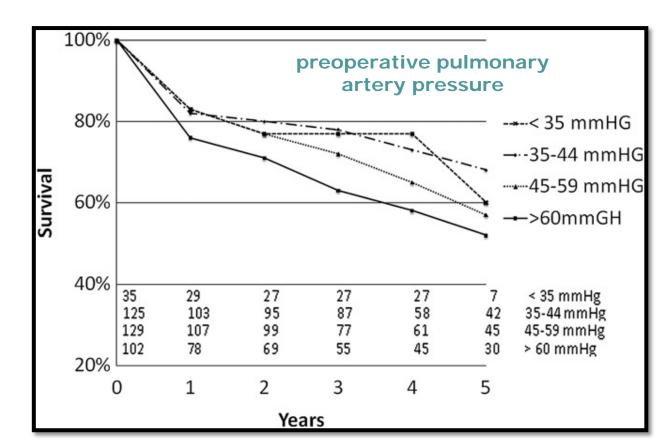
(Continued)

AORTIC VALVE DISEASE

PH in aortic stenosis

LV diastolic dysfunction,

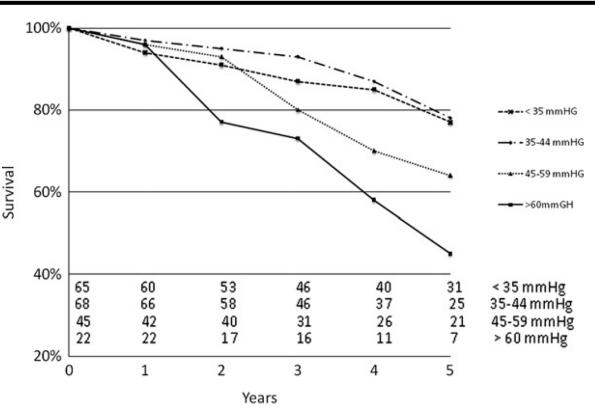
with passive transmission of increased LV end-diastolic and left atrial pressures to the pulmonary arteries Degree of mitral regurgitation

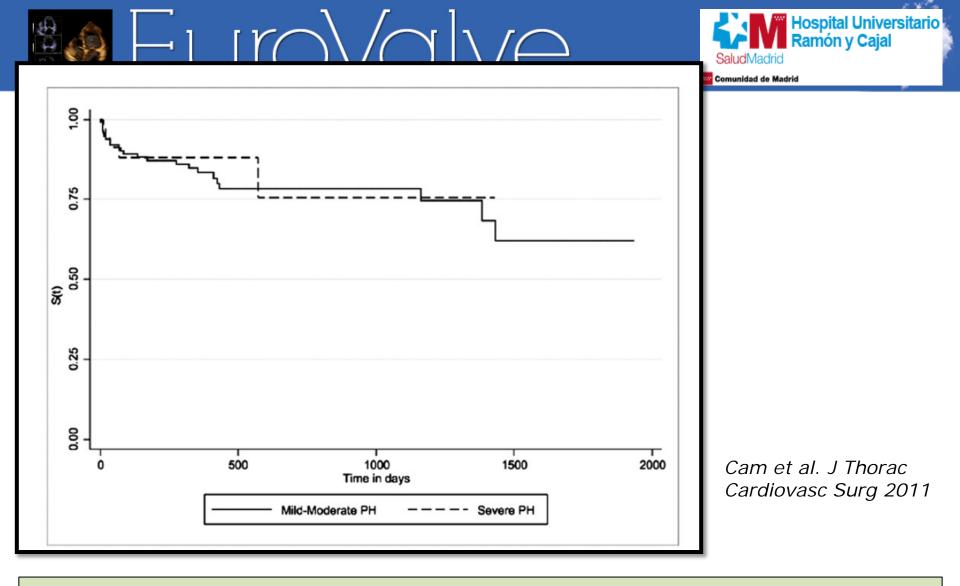


AORTIC STENOSIS

1080 patients undergoing AVR. Follow-up was 4.0 ±3.4 years

- 574 (53%) with normal sPAP.
- 506 (47%) with PH (sPAP > 35 mm Hg).


Melby SJ, et al. J Thorac Cardiovasc Surg 2011. TABLE 3. Change in systolic pulmonary artery pressure after aortic valve replacement in patients with mild, moderate, and severe pulmonary hypertension



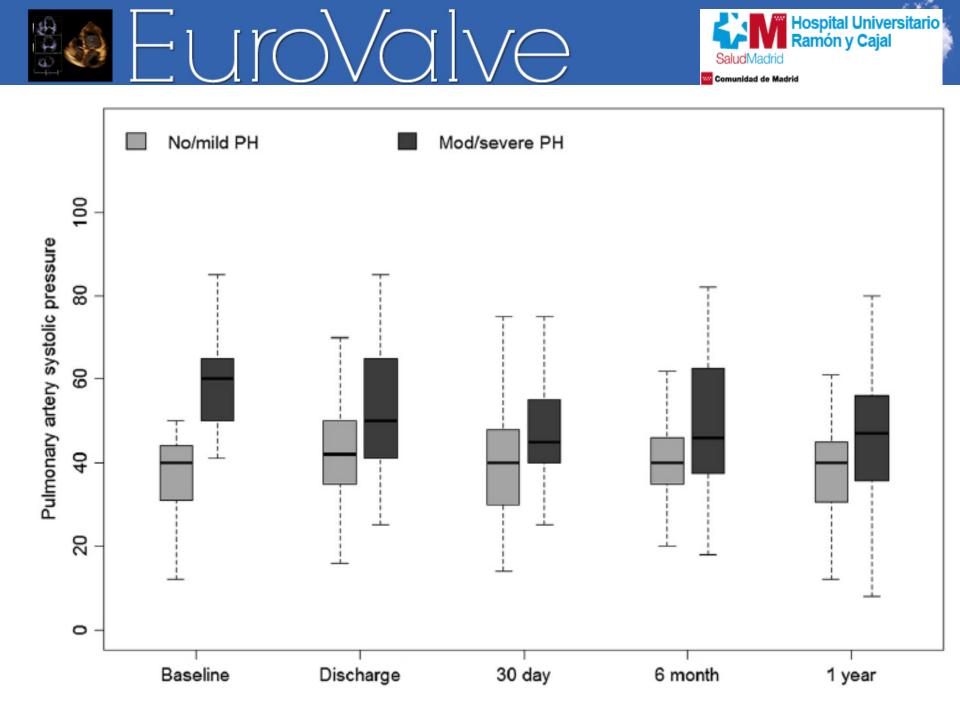
Melby SJ, et al. J Thorac Cardiovasc Surg 2011.

- 81 patients with severe AS and severe PH (35 patients underwent AVR). Follow up 347 ±347 days
- 236 patients with severe AS and mild-moderate PH (114 underwent AVR). Follow up 548 ±530 days

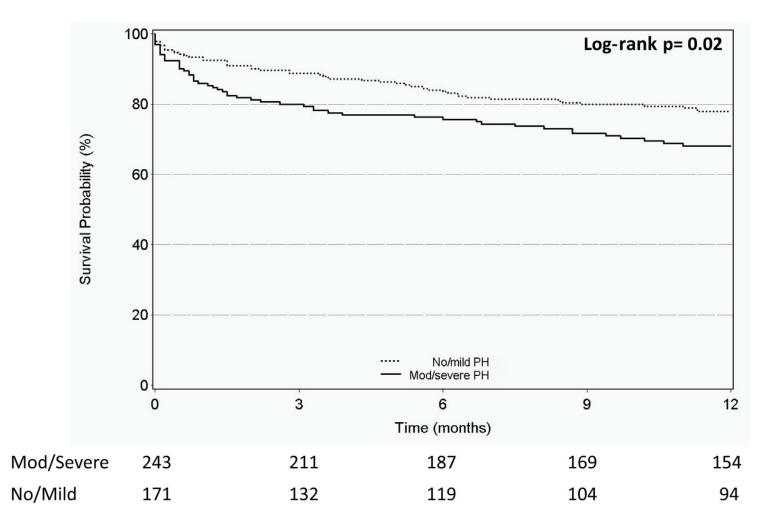
TABLE 4. Compariso	n of preope	rative and po	stopera	tive hemo-	- Hospital Universitario
dynamic changes in pati	ients with aort	tic valve replace	ement		Ramón y Cajal
			Р	Net	SaludMadrid
Characteristic	Preoperative	Postoperative	value	change	
Systolic PAP (mm Hg)					
Mild-to-moderate PH	36.4 (9.4)	34.1 (10.3)	.008	-2.7 (10.2)	
Severe PH	70.5 (14.6)	47.9 (12.0)	<.001	-22.5 (14.4)	
P value	<.001	<.001			
Diastolic PAP (mm Hg)					High preoperative PCWP was a
Mild-to-moderate PH	15.6 (5.5)	15.6 (4.9)	.9	-0.01 (6.5)	
Severe PH	31.5 (7.1)	19.7 (5.4)	<.001	-11.8 (7.6)	significant preoperative predictor of
P value	<.001	<.001			
Mean PAP (mm Hg)					reduction of mean PAP
Mild-to-moderate PH	22.5 (6.6)	21.7 (6.1)	.1	-0.9 (7.0)	
Severe PH	45.3 (8.3)	29.0 (6.8)	<.001	-16.2 (9.0)	
P value	<.001	<.001			

TABLE 5. Mean pulmonary artery pressure changes postoperatively compared with baseline preoperative pulmonary artery pressures stratified by mortality at the end of follow-up

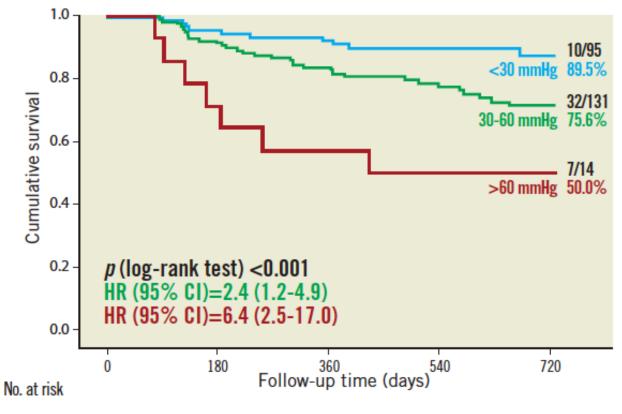
23.6 (6.3) 24.6 (7.2)	*	22.5 (6.8)
24.6 (7.2)		
	Postoperative mean PAP	20.9 (5.5)
1.0 (7.7)	Net change	-1.5 (6.7)
.5	P value	.04
51.2 (15.5)) Preoperative mean PAP	44.3 (6.4)
36.1 (8.7)	Postoperative mean PAP	27.9 (5.8)
-15.1 (36.3)) Net change	-16.4 (7.4)
0.1	P value	<.001
	1.0 (7.7) .5 51.2 (15.5 36.1 (8.7) -15.1 (36.3	1.0 (7.7) Net change .5 P value 51.2 (15.5) Preoperative mean PAP 36.1 (8.7) Postoperative mean PAP -15.1 (36.3) Net change



Prevalence and Impact of Pulmonary Hypertension


Am J Cardiol 2015, ahead of print

Variable	Pulmona	p Value			
	No/mild	Moderate /severe			
	(n=172)	(n=243)			
Echocardiogrpahy					
Left ventricular ejection fraction (%±SD)	53±17	53±14	0.9		
Left ventricular ejection fraction <30%	38 (16%)	21 (12%)	0.3		
Aortic valve area ($cm^2 \pm SD$)	0.65 ± 0.1	0.65 ± 0.1	0.5		
Mean gradient (mmHg±SD)	48±13	48±13	0.9		
Peak velocity	$4.4{\pm}0.6$	$4.4{\pm}0.6$	0.7		
Septal thickness (cm±SD)	1.3 ± 0.2	1.3 ± 0.2	0.6		
Posterior wall thickness (cm±SD)	1.2 ± 0.2	1.2 ± 0.2	0.5		
Left ventricular end systolic diameter (cm±SD)	3.1±0.9	3.2 ± 0.9	0.2		
Moderate or severe mitral regurgitation	19	(8.6%)	29 (18.4%)		
Moderate or severe tricuspid regurgitation	13	(5.9%)	38 (23%)		
Moderate or severe RV dysfunction*		(19.8%)	29 (35.3%)		
· · · · · · · · · · · · · · · · · · ·			12 (7.3%)		
Moderate or severe RV dilatation	0	6 (2.6%)			
Systolic pulmonary artery pressure (mmHg±SD)	36±9	61±12	< 0.001		
Right sided heart catheterization [†]					
Right atrial pressure; mean (mmHg±SD)	8.9±7.9	8.9±5.5	1		
Pulmonary artery pressure (mmHg±SD)			< 0.01		
Systolic	44.9±13	57±16			
Diastolic	18.9 ± 6	22.8±7			
Mean	28 ± 8	34±9			
Pulmonary capillary wedge pressure; mean (mmHg±SD)	19±8	21±8	0.4		
Cardiac output (L/min±SD)	4.2±1.2	4.6 ± 1.5	0.3		
Cardiac index (L/min/m ² ±SD)	2.5±0.7	$2.4{\pm}0.8$	0.9		



Reduction of SPAP after TAVR is associated with favourable prognosis

Sinning JM. EuroIntervention 2014 D. Medvedofsky et al. Journal of Cardiology 2014

AORTIC REGURGITATION

- PH has been studied less in patients with AR
- Severe PH in 16-24% of the patients
- PH related to high LV end-diastolic pressure
- It is largely reversible after surgery
- Preoperative PH influence on outcomes is controversial.

Khandhar S, et al. Ann Thorac Surg 2009; Naidoo DP, et al. Q J Med 1991 Hirshfeld JW, et al. Circulation 1974

Therapy

- The optimal treatment of the underlying left heart disease is recommended in patients with PH due to left heart disease. *I*, *C*
- There is no specific therapy for PH due to left heart disease.
- The use of PAH-specific drugs is not recommended until robust data from long-term studies are available.

Conclusions I

- The **systolic PAP may decrease** following AVR, mitral valve replacement, or percutaneous balloon mitral valvuloplasty.
- Following MVR, the presence of prosthesis-patient mismatch precluded normalization of systolic PAP and has been associated with a high rate of postoperative PH.
- The **severity of baseline** PH seem to be correlated with the persistence of PH after surgery .

- Baseline and postoperative PH increased long-term mortality.
- Earlier intervention should be considered for asymptomatic or minimally symptomatic patients with significant aortic/mitral valve disease and moderate to severe PH-before irreversible changes in the pulmonary circulation can occur.

Thanks for your attention

