

EUTOVOIVO October 24-25 2014, Rome, Italy www.eurovalvecongress.com

CAN LEFT VENTRICULAR AFTERLOAD INFLUENCE RV FUNCTION IN AORTIC STENOSIS?

Galli E^{1,2,3}, Guirette Y¹, Mabo P^{1,2,3}, Donal E^{1,2,3}

¹ Service de Cardiologie et Maladies Vasculaires, CHU-Pontchaillou, Rennes – France ² INSERM, UMR 1099, Rennes, France

³ LTSI, Université de Rennes 1, Rennes, France

Introduction: alteration in left ventricular (LV) afterload may influence RV function, as observed in patients with arterial hypertension. A ventricular interdependency has been advocated as the main reason for these findings. Aim of the present study is to verify if a progressive increase in ventriculo-arterial impedance (ZV_a), may influence RV function in patients with aortic stenosis (AS). **Methods:** 218 patients (mean age: 79.9±8.6 years, males: 54%) with severe AS (aortic surface <1 cm² or <0.6 cm²/m²) underwent standard echocardiography to characterize aortic valve gradients, biventricular function and ZV_a. **Results:** according to ZV_a quartiles the population was divided in four groups: Group A (ZV_a≤3.43 mmHg/ml/m²), Group B (3.43<ZV_a≤4.1 mmHg/ml/m²). Progressive ZV_a increase was associated with a significant reduction in LV performance, as indicated

by the progressive reduction in LV ejection fraction (LVEF) (p=0.02), indexed stroke volume (SVi) (p<0.0001), mean mitral annulus systolic velocity at tissue Doppler imaging (s') (p=0.05), global longitudinal strain (GLS) (<0.0001) and by a concomitant significant reduction in RV function, as indicated by TAPSE values (p=0.001) (Table 1).

Table 1	Group A	Group B	Group C	Group D	ANOVA P
SVi (ml/m2)	49.6±14.0	47.3±7.1	40.9±5.9	31.6 ± 6.8	< 0.0001
s' (cm/sec)	6.2 ± 1.2	6.5 ± 1.6	6.21±1.9	5.6 ± 1.5	0.05
LV GLS (%)	-14.4 ± 13.3	-13.3 ± 3.4	-12.5 ± 3.5	-10.6 ± 3.2	< 0.0001
TAPSE	21.4 ± 4.0	20.4±4.3	20.9±3.4	18.1 ± 4.8	0.001

Figure 1

At Kaplan-Meier analysis, the concomitant presence of a reduced TAPSE (\leq 17 mm) and mild increase in ZVa (>3.43 mmHg/ml/m²) was associated to a significant increase in mortality (Log-Rank test, p=0.02) (Figure 1)

Conclusions: In patients with severe AS, increased ZV_a has a negative impact on LV and RV function. The concomitant presence of reduced RV function and increased ZV_a portends a poor prognosis. Further studies on larger samples are needed to clarify the effective role of increased post-charge and biventricular interdependence on RV function in AS.