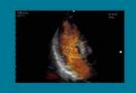


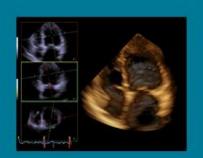
EuroValve October 24-25, 2014

Emerging biomarkers in valvular heart disease (aortic stenosis)

Cécile Oury, PhD

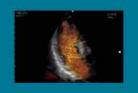



Cardiovascular Sciences Université



EuroValve October 24-25, 2014

Faculty disclosure


Cécile OURY

I have **no financial relationships** to disclose

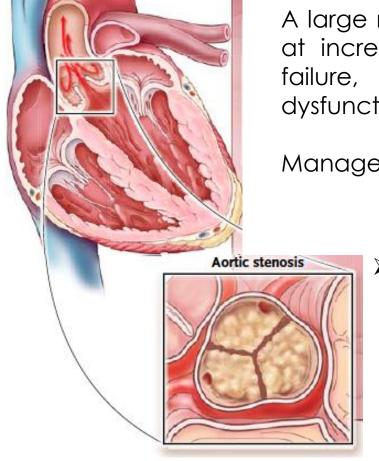
Biomarker: definition

"a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention."

Include any representation of a biological process, including circulating molecules, genetic markers, cellular markers, results of imaging, or findings on physical examination

EuroValve

Aortic stenosis


Severe AS affects > 3-7 % of patients over 65 years.

A large majority of patients are asymptomatic and are at increased risk for untoward events (death, heart failure, symptomatic deterioration, ventricular dysfunction).

Management: controversial. Risk stratification required.

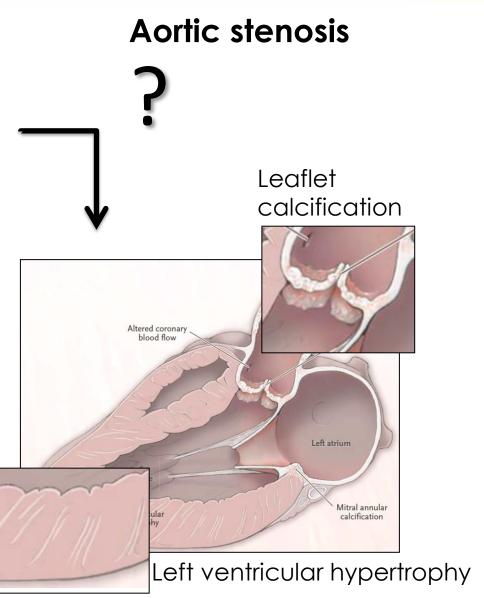
Diagnosis: imaging techniques, high cost, skill.

- Need for easily accessible blood biomarkers that can provide incremental diagnostic and prognostic information to the existing tests in asymptomatic patients.
 - Severity
 - Progression
 - outcome

Biomarkers

Hypothesisdriven Biomarkers

« omics » Biomarkers


-uroValve

Advanced age, male sex, smoking Hypertension, diabetes, High LDL-C, Lp(a) levels, obesity, overweight, CKD, congenital AV malformation

Disease progression

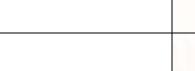
EuroValve

Mechanisms of disease progression:

Inflammation

Lipid infiltration

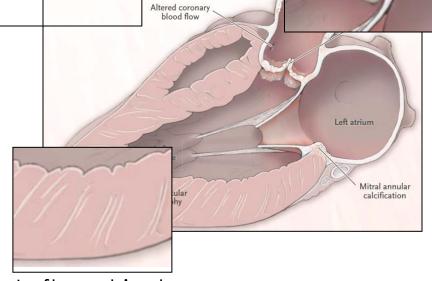
Myofibroblast differentiation


Shear stress, platelet activation

Cardiac angiotensin II production

Procalcific stimuli

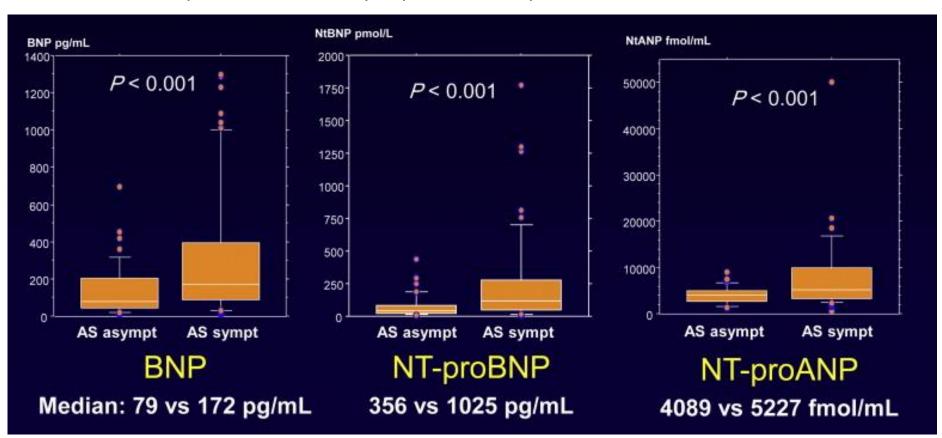
ECM deposition


Remodeling

Leaflet calcification

Hypothesisdriven Biomarkers

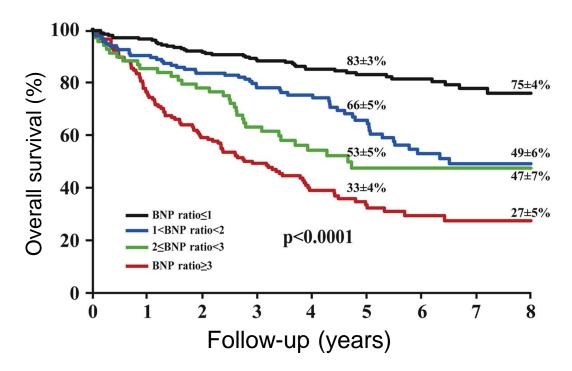
Left ventricular hypertrophy



Natriuretic peptides

Markers of myocardial response to intracardiac pressure increases

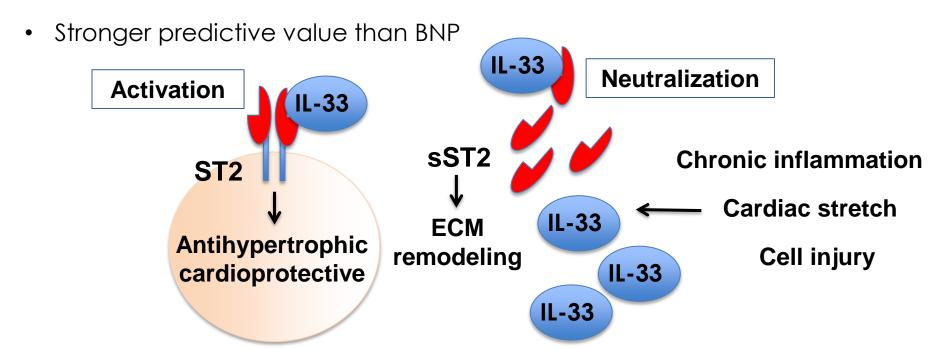
Natriuretic peptides are significantly higher in symptomatic patients compared with asymptomatic patients with severe AS



Natriuretic peptides

BNP clinical activation is associated with excess long-term mortality incrementally and independently of all baseline characteristics

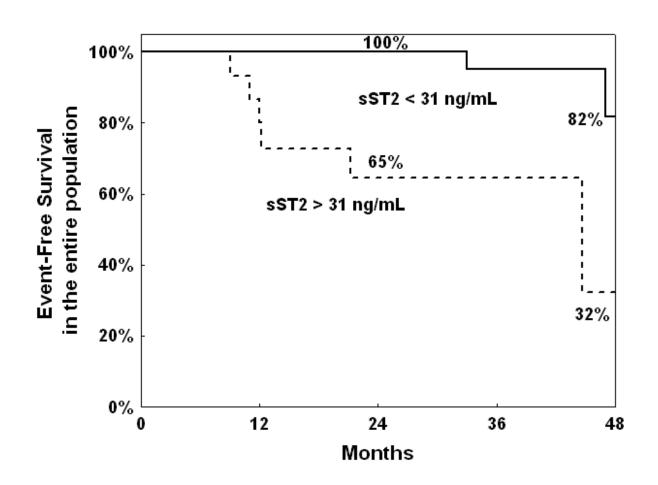
Asymptomatic with normal LVEF AS patients


BNP clinical activation = BNP ratio (measured BNP/maximal normal BNP value specific to age and sex) >1

Clavel et al. J Am Coll Cardiol 2014

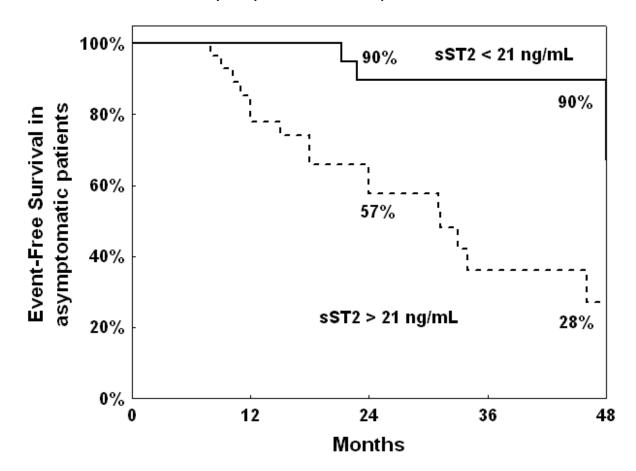
Soluble ST2

- Member of the IL-1 receptor family.
- Elevated concentrations of sST2: worse prognosis of acute and chronic HF


Involved in at least three pathophysiological mechanisms of AS: inflammation/remodeling,fibrosis/cardiac stretch

Soluble ST2

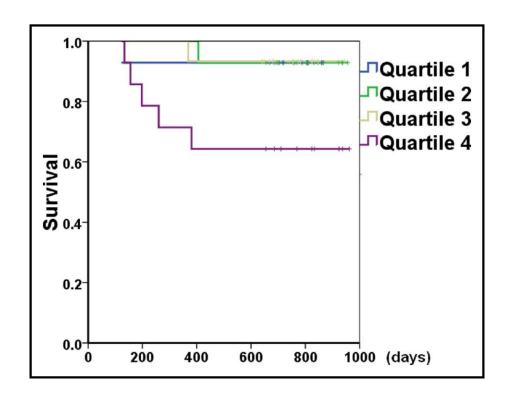
Independently predicts mortality in aortic stenosis



Soluble ST2

Independently predicts mortality in aortic stenosis in asymptomatic patients

Troponins

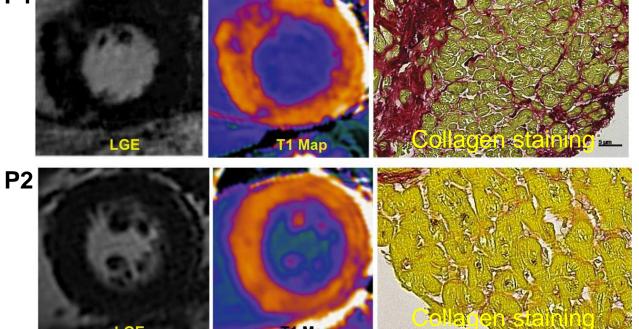

High sensitivity assays

cardiac troponins circulate in a variety of acute and chronic cardiac and non-cardiac disease conditions, including acute heart failure and chronic symptomatic and asymptomatic left ventricular dysfunction

Troponins

High hs-TnT levels: worse prognosis in moderate to severe AS

Left ventricular mass is a major determinant of circulating hs-TnT levels



EuroValve

Troponins

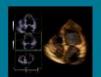
High-sensitivity troponin I concentrations: marker of advanced hypertrophic response and adverse outcomes in AS with normal LVEF

Peak aortic jet velocity:

4.8 m/s

LV mass index: 114 g/m²

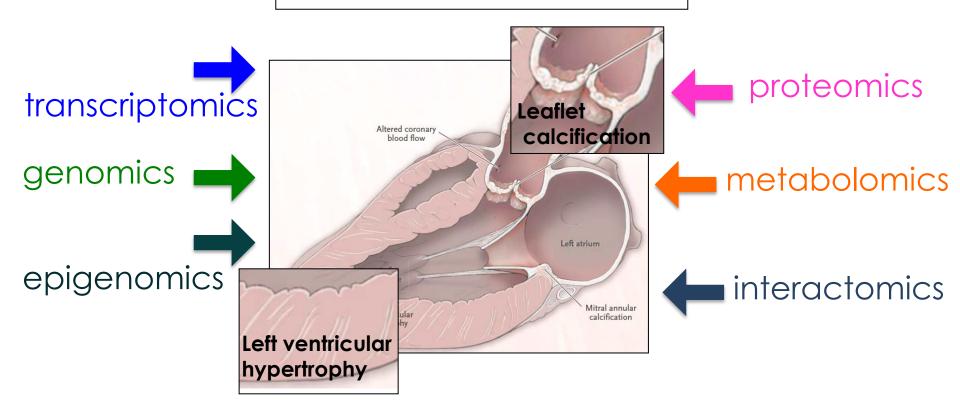
Plasma cTnI: 11.9 ng/L


Peak aortic jet velocity:

5.1 m/s

LV mass index: 81 g/m²

Plasma cTnI: 2.5 ng/L


High sensitivity troponins seem to reflect myocardial remodeling and fibrosis

EuroValve

« omics » biomarkers

- > Analysis of biomolecules on a large scale
- Global integrated view of molecular and cellular processes
- > Basis for a highly directed personalised and predictive medicine
- Impact on health and disease

Genomics

Genetic Associations with Valvular Calcification and Aortic Stenosis

Genome wide association study (n=6942 patients)

- One SNP in the lipoprotein(a) locus (LPA) locus reaches genomewide significance for the presence of aortic valve calcification (CT scanning) across multiple ethnic groups
- Correlation of genetically determined Lp(a) levels and aortic valve calcification
- LPA genotype is associated with incident clinical aortic stenosis and aortic-valve replacement

Lp(a):

- cholesterol-rich particle (apolipoprotein B100 + apolipoprotein(a))
- risk factor for coronary artery disease
- accumulate in both early-stage and end-stage aortic-valve lesions
 - > Causal relationship Lp(a) / aortic valve disease
 - Lowering Lp(a) levels to slow down disease progression ?

Small and long non-coding RNAs in cardiac homeostasis

Gene regulatory networks

Targeted pathways

-

Studies on miRNA in aortic stenosis

Patient cohort	Samples	Observation	References	
9 patients (AS versus aortic insufficiency requiring AVR)	Aortic valve leaflets	Decreased expression of miR-26a, miR-30b, and miR-195 in the aortic valves of patients requiring AVR due to AS	Nigam et al. J Heart Valve Dis 2010	
46 AS patients requiring AVR	LV intraoperative biopsies	miR-133a predict regression of LV hypertrophy (1 year) after valve replacement	Villar et al. <i>Heart</i> 2011	
19 biscupid aortic valve versus 17 tricuspid aortic valve patients	aortic valve leaflets	Decreased expression of miR-141 in bicuspid aortic valves associated with increased BMP-2 and calcification	Yanagawa et al. J Thorac Cardiovasc Surg 2012	
75 AS patients requiring AVR versus 32 surgical controls	LV intraoperative biopsies + plasma	High expression of miR-21 correlates with mean transvalvular gradient and LV fibrosis	Villar et al. <i>Int J Cardiol</i> 2013	
5 AS patients before TAVI versus healthy controls	LV intraoperative biopsies + plasma	Decreased miR-1 correlates with increased soluble FABP3 in AS patients upon LVH	Varrone et al <i>J Am Coll</i> Cardiol 2013	

Studies on miRNA in aortic stenosis

Patient cohort	Samples	Observation	References
112 patients with moderate to severe AS versus 40 healthy controls	Plasma	levels of miR-1, miR-133, and miR-378 predict LVH in patients with AS miR-378 levels correlate with left ventricular mass index	Chen et al. PLoS One 2014
57 patients with moderate to severe AS versus 10 healthy controls	Plasma	Increased miR-210 levels in AS patients comparable to increment in NT-proBNP levels miR-210 levels associate with higher mortality (3.5 year follow-up)	Rosjo et al. <i>PLoS One</i> 2014
28 patients with moderate to severe AS versus 10 healthy controls	endomyocardial biopsies and necropsies	down-regulation of miR-122 in severe myocardial fibrosis in AS, through TGF-β1 up-regulation	Beaumont et al. Clin Sci (Lond) 2014
74 AS patients requiring AVR	LV intraoperative biopsies + plasma	miR-133a as a positive predictor of the hypertrophy reversibility after surgery	Garcia et al. <i>J Am Heart Assoc</i> 2013
10 AS patients requiring AVR	LV intraoperative biopsies	miRNA-30b regulates aortic valvular calcification and apoptosis through direct targeting of Runx2, Smad1, and caspase-3	Varrone et al <i>J Thorac</i> Cardiovasc Surg 2013

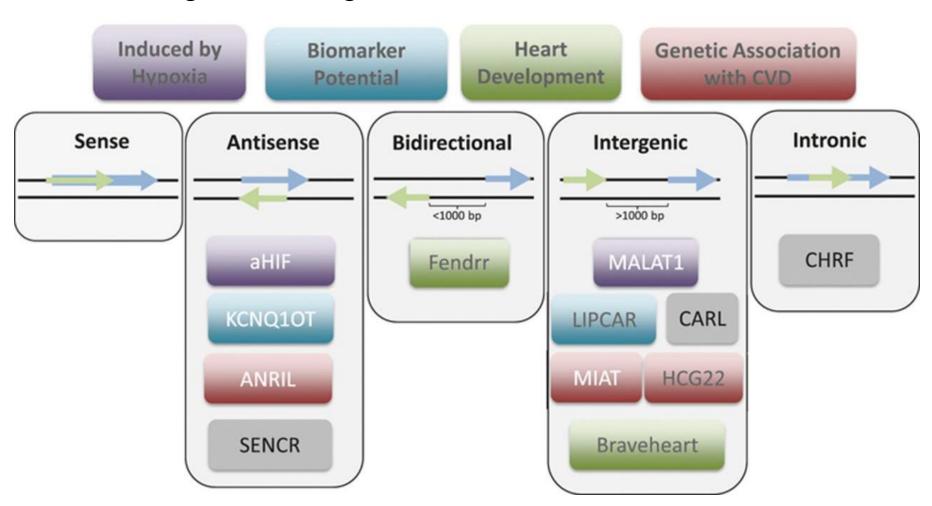
Studies on miRNA in aortic stenosis

Patient cohort	Samples		Observation		Re	ferences
112 patients with moderate to severe AS versus 40 healthy controls	Plasma		levels of miR-1, m miR-378 predict LV with AS	/H in patients		en et al. <i>PLoS One</i> 2014
57 patients with mod	derate	Increased	miR-210	levels	in	AS

57 patients with moderate to severe AS versus 10 healthy controls

Increased miR-210 levels in AS patients comparable to increment in PLOS One 2014 NT-proBNP levels miR-210 levels associate with higher mortality (3.5 year follow-up)

	mortaiii	(3.5 year follow-up)	
28 patients with moderate severe AS versus 10 healthy controls	to endomyocardial necropsies	through TGF-β1 up-regulation	et al. <i>Clin Sci (Lond)</i>
74 AS patients requiring AV	'R LV intraoperative biopsies + plasma	miR-133a as a positive predictor of the hypertrophy reversibility after surgery	Garcia et al. <i>J Am Heart Assoc</i> 2013
10 AS patients requiring AV	'R LV intraoperative biopsies	miRNA-30b regulates aortic valvular calcification and apoptosis through direct targeting of Runx2, Smad1, and caspase-3	Varrone et al J Thorac Cardiovasc Surg 2013



- > A few miRNA have been involved in LVH or fibrosis
- Circulating miRNA levels reflect myocardial expression
- Plasma levels of miR-210 correlate with BNP levels and increased mortality

Long non-coding RNAs: novel attractive biomarkers

Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs

- Mouse model
- ➤ heart-specific IncRNAs
- relevant to maladaptive remodelling, cardiac function

IncRNAs in aortic stenosis

Downregulation of NovInc44 in LV biopsies from AS patients

Biomarkers: the future is bright

Biomarkers will be more and more used in patients with VHD

- in the diagnostic work-up
- to characterize the symptomatic status
- to predict the outcome
- to evaluate the impact of treatment

Toward a multi-biomarker approach ?