Even mild para-valvular AR impacts mortality after TAVI

Jean-Luc MONIN, MD, PhD. Henri Mondor University Hospital, Créteil, FRANCE

Lecture and/ or consulting fees from:

Abbott Vascular, Astrazeneca, Bristol-Myers Squibb, Daiichi-Sankyo, Edwards Lifesciences, GE Healthcare, Ipsen Pharma, Medtronic, MSD, Saint-Jude Medical, Sanofi-Aventis, Servier, Siemens, Toshiba.

Transcatheter aortic valves: A rapidly evolving technology

Mechanisms of paravalvular leaksafter TAVISinning et al. J Am Coll Cardiol. 2012; 59: 1134-41

Heavily calcified valve

Malposition : too deep

Malposition : too high

Large ring/ sizing errror

Currently available transcatheter valves: Soon to become "vintage"

Medtronic CoreValve ®

Edwards XT Transcatheter heart valve

23 mm

26 mm

19.1 mm

14.3 mm

17.2 mm

16F	18F	20F
(18-22 mm)	(22-24 mm)	(25-27 mm)

Next generation: Edwards SAPIEN 3 Transcatheter Heart Valve

- Frame design
- Enhanced frame geometry for ultra-low delivery profile
- High radial strength for circularity and optimal hemodynamics

Designed to minimize paravalvular leak

Bovine pericardial tissue

- Leaflet shape optimized for hemodynamics and durability
- Carpentier-Edwards ThermaFix* process intended to reduce the risk of calcification

Low frame height

· Respects the cardiac anatomy

Medtronic CoreValve® Transcatheter heart valve

Next generation: Medtronic Evolut™ Transcatheter Heart Valve

Negative impact of (even mild) paravalvular leaks: The evidence

Para-valvular leaks after TAVI: Incidence and impact on early outcome

Data from 690 patients treated with TAVI / Prospective multicentre German TAVI registry (year 2009)

- Age: 81±6 years
- Female gender: 56%
- EuroSCORE: 20±13%
- Medtronic CoreValve: 84%
- Edwards SAPIEN: 16%
- Transfemoral: 92%
- AR assessed by angio +++ after device deployment and removal of catheter/ guidewire

Abdel-Wahab et al. Circulation. 2011; 97: 899-906

Para-valvular leaks after TAVI: Incidence and impact on early outcome

Post-procedural AR≥ 2/4 is a strong independent predictor of in-hospital death (adjusted OR: 2.43, 95% CI 1.22 to 4.85)

Abdel-Wahab et al. Circulation. 2011; 97: 899-906

Predictors of early and late mortality after TAVI (Italian registry)

June 2007-December 2009: 663 patients implanted at 14 Italian centers (self-expanding 18-F CoreValve prosthesis)

Age: 81±7 years; Female gender : 56%; EuroSCORE: 23±13%; Transfemoral: 90%; 30-day mortality: 5,4%

	Odds Ratio	95% LCL	95% UCL	P Value
Early mortality				
Conversion to open heart surgery	38.68	2.86	522.59	0.006
Cardiac tamponade	10.97	1.59	75.61	0.02
Major access site complications	8.47	1.67	42.82	0.01
Left ventricular ejection fraction <40%	3.51	1.62	7.62	0.002
Prior balloon aortic valvuloplasty	2.87	1.24	6.65	0.01
Diabetes mellitus	2.66	1.26	5.65	0.01
	Hazard Ratio	95% LCL	95% UCL	P Value
Late mortality				
Prior stroke	5.468	1.47	20.39	0.01
Post-procedural paravalvular leak \geq 2+	3.785	1.57	9.10	0.003
Prior acute pulmonary edema	2.696	1.09	6.68	0.03
Chronic kidney disease	2.532	1.01	6.35	0.048
LCL indicatos lower confidence limit: LICL indicatos i	upper confidence limit			

LCL indicates lower confidence limit; UCL indicates upper confidence limit

Tamburino et al. *Circulation*. 2011; 123: 299-308

Long-term outcome after TAVI : the UK-TAVI Registry

- Prospective registry: 870 patients from 25 centers from England and Wales
- Age: 82±7 years, 52% males, median EuroSCORE: 19% (12-28%)
- Complete/ valid data : 98.5% (30-D outcomes); 100% (mortality tracking)

Moat et al. J Am Coll Cardiol. 2011; 58: 2130-8

Long-term outcome after TAVI : the UK-TAVI Registry

- Edwards/ CoreValve: 410/452
- Transfemoral: N= 599
- Transapical/ Subclavian: N= 271
- 30-day mortality: 7%
- Stroke: 4.1%
- Myocardial infarction: 1.3%

Predictors of 1-year mortality: <u>AR> 2/4: HR: 1.7 (1.1-2.5, p=0.016);</u> LVEF< 50%: HR: 1.5 (1.03-2.16, p=0.03) and COPD: HR: 1.4 (1.00-1.98, p=0.05)

Moat et al. J Am Coll Cardiol. 2011; 58: 2130-8

PARTNER-A / High-risk patients : TAVI versus surgical AVR

Mortality at 30 days: 3% (TAVI) vs. 7% (surgery), p= 0,07. Overestimated by both STS: 12±4 (x2) and EuroSCORE: 29±16% (x4)

Clinical outcome at 1 year	TAVI (n= 348)	Surgical AVR (n= 351)	P value
Death from any cause, n (%)	84 (24)	89 (27)	0,44
Cardiovascular death, n (%)	47 (14)	40 (13)	0,63
Death/ Repeat Hosp., n (%)	120 (35)	119 (36)	0,73
Stroke or TIA, n (%)	27 (8)	13 (4)	0,04
Major stroke, n (%)	17 (5)	8 (2)	0,07
Death/ major stroke, n (%)	92 (27)	93 (28)	0,68

Smith et al. N Engl J Med. 2011; 364: 2187-98

High-risk patients: no difference in 1-year outcome after TAVI or surgical AVR

TAVI: At what price?

The approximate doubling in the rate of neurologic events (including major strokes) after TAVI as compared with surgery remains a concern.

Smith et al. N Engl J Med. 2011; 364: 2187-98 Lazar HL. N Engl J Med. 2011; 364: 1667-8

<u>Two-year</u> outcomes after TAVI or surgical aortic valve replacement (PARTNER-A)

- After 2 years, the rates of death from any cause were similar between groups: 34% for TAVI versus 35% for surgery (P = 0.78).
- <u>The frequency of all strokes after 2 years did not differ significantly</u> between the groups (hazard ratio, 1.22; 95% CI, 0.67 to 2.23; p = 0.52).

Kodali et al. N Engl J Med. 2012; 366: 1686-95

<u>Two-year</u> outcomes after TAVI or surgical aortic valve replacement (PARTNER-A)

- Para-valvular AR was more frequent after TAVI (P<0.001)
- Even mild para-valvular AR was associated with increased late mortality (P<0.001)

Kodali et al. N Engl J Med. 2012; 366: 1686-95

More evidence: The meta analysis

Meta Analysis: Incidence, predictors and outcome of aortic regurgitation after TAVI

<u>45 studies</u>, <u>12 926 patients</u>

- Edwards SAPIEN: n= 7 279
- Medtronic CoreValve: n=5 261
- Pooled estimate for moderate/severe AR = 11.7% (95% CI: 9.6 to 14.1).
- Moderate/severe AR was more common with the CoreValve: 16.0% vs. 9.1%, p 0.005.

First Author (Ref. #)	Center	Year	n	Approach	Valve	Follow-Up
Rodes-Cabau et al. (3)	Canada (multicenter)	March 2010	339	TF/TA	ES	1 yr
amburino et al. (4)	Italy (multicenter)	January 2011	663	TF/SC	MC	1 yr
Noat et al. (5)	UK (multicenter)	November 2011	870	TF/TA	ES/MC	2 yrs
Kodali et al. (10)	USA	March 2012	348	TF/TA	ES	2 yrs
emos et al. (14)	Sao Paulo, Brazil	May 2012	79		MC	1 yr
Sinning et al. (15)	Bonn, Germany	March 2012	146	TF/SC	MC	1 yr
raccaro et al. (16)	Italy (multicenter)	April 2012	384	TF/SC/TA	ES/MC	1 yr
Bagur et al. (Online Ref. 1)	Quebec, Canada	February 2011	100	TA	ES	6 months
urvitch et al. (Online Ref. 2)	Vancouver, Canada	May 2011	310	TF/TA	ES	30 days
efevre et al. (Online Ref. 3)	International multicenter	January 2011	130	TF/TA	ES	1 yr
Itchaninoff et al. (Online Ref. 4)	France (multicenter)	September 2010	244	TF/TA	ES/MC	30 days
ttias et al. (Online Ref. 5)	France (multicenter)	April 2010	83	TF	ES/MC	1 yr
chetche et al. (Online Ref. 6)	Toulouse, France	January 2010	45	TF	ES/MC	30 days
layashida et al. (Online Ref. 7)	Massy, France	February 2012	260	TF/TA/SC	ES/MC	1 yr
bdel-Wahab et al. (Online Ref. 8)	Germany (multicenter)	March 2011	690	TF/TA/SC/AA	ES/MC	30 days
Inbehaun et al. (Online Ref. 9)	Berlin, Germany	January 2012	358	TA	ES	2 yrs
conradi et al. (Online Ref. 10)	Hamburg, Germany	January 2012	82	TF/TA	ES	30 days
ange et al. (Online Ref. 11)	Munich, Germany	January 2012	415	TF/TA/SC/AA	ES/MC	6 months
eber et al. (Online Ref. 12)	Munich, Germany	December 2011	68	TF	MC	1 yr
chorianopoulos et al. (Online Ref. 13)	Heidelberg, Germany	April 2012	70	TF	MC	1 yr
Grube et al. (Online Ref. 14)	Siegburg, Germany	December 2008	136	TF/SC/IL	MC	1 yr
Grube et al. (Online Ref. 15)	International multicenter	July 2011	60	TF	MC	30 days
Valther et al. (Online Ref. 16)	Germany (multicenter)	February 2012	299	TA	ES	3 yrs
tohr et al. (Online Ref. 17)	Aachen, Germany	December 2011	175	TF/TA	MC/ES	30 days
herif et al. (Online Ref. 18)	Germany (multicenter)	November 2010	56	TF	MC	30 days
Puls et al. (Online Ref. 19)	Göttingen, Germany	February 2012	180	TF/TA	ES/MC	1 yr
otzmann et al. (Online Ref. 20)	Bochum, Germany	August 2011	145	TF/SC	MC	6 months
mabile et al. (Online Ref. 21)	France and USA	March 2012	126	TF/TA	ES/MC	1 yr
Buchanan et al. (Online Ref. 22)	Milan, Italy	September 2011	305	TF/TA/AX/AA	ES/MC	30 days
O'Onofrio et al. (Online Ref. 23)	Italy (multicenter)	August 2011	504	ТА	ES	2 yrs
we et al. (Online Ref. 24)	International multicenter	October 2011	104	TF/TA	ES	30 days
lakkar et al. (Online Ref. 25)	USA	March 2012	179	TF	ES	2 yrs
funoz-Garcia et al. (Online Ref. 26)	Málaga, Spain	April 2011	141	TF/SC	MC	6 months
Concalves et al. (Online Ref. 27)	Madrid, Spain	May 2011	74	TF/TA	MC/ES	6 months
Venaweser et al. (Online Ref. 28)	Bern, Switzerland	November 2011	257	TF/TA/SC	ES/MC	2.5 yrs
Oworakowski et al. (Online Ref. 29)	London, UK	August 2010	151	TF/TA	ES	30 days
abbour et al. (Online Ref. 30)	London, UK	November 2011	87	TF	ES/MC	_
Piazza et al. (Online Ref. 31)	International multicenter	August 2008	646	TF	MC	30 days
Buellesfeld et al. (Online Ref. 32)	International multicenter	April 2011	126	TF/SC	MC	2 yrs
homas et al. (Online Ref. 33)	International multicenter	April 2010	1,038	TF/TA	ES	1 yr
an der Boon et al. (Online Ref. 34)	Rotterdam, Netherlands	January 2012	230	TF/SC	MC	30 days
Stahli et al. (Online Ref. 36)	Bern, Switzerland	August 2011	130	TF/TA	ES/MC	1 yr
odali et al. (Online Ref. 36)	USA	March 2011	55	TF	ES	1 yr
ilard et al. (Online Ref. 37)	France	May 2012	3,195	TF/SC/TA/TC/AA	ES/MC	1 yr
Vendler et al. (Online Def. 28)	International multiconter	April 2012	120	ТА	FE	1.vr

Athappan et al. J Am Coll Cardiol. 2013; 61:1585–95

Meta Analysis: Incidence, predictors and outcome of aortic regurgitation after TAVI

Study name	Statistic	s for ea	ch study			Haz	ard ra	tio a	nd 95	% CI	
	Hazard ratio	Lower limit	Upper limit	Z-Value	p-Value						
Lemos*	4.900	1.367	17.570	2.439	0.015	1	1	1		+	-+
Hayashida	1.970	1.187	3.271	2.621	0.009				-		-
Amabile	1.500	0.329	6.829	0.524	0.600			+	+		\rightarrow
Sinning	3.890	2.020	7.491	4.063	0.000					\vdash	╼┼
Tamburino	3.785	1.572	9.112	2.969	0.003					+	
Fraccaro	2.190	1.023	4.686	2.020	0.043				\vdash	-	_
Kodali	2.110	1.433	3.107	3.783	0.000						-
Moat	1.490	1.002	2.215	1.971	0.049				H	■┼	
Gilard	2.490	1.909	3.248	6.728	0.000						+
All (N=4791)	2.273	1.840	2.808	7.609	0.000		1		1	•	
						0.1	0.2	0.5	1	2	5
							Deere	oned Di	and a	1	a a a al

Figure 4 Forest Plot Showing the HRs of Moderate or Severe AR on Overall Mortality

- Moderate/severe AR increased mortality at 30 days: odds ratio: 2.95; 95% CI: 1.73 to 5.02.
- Moderate/severe AR increased mortality at 1 year: odds ratio: 2.27; 95% CI: 1.84 to 2.81.

Athappan et al. J Am Coll Cardiol. 2013; 61:1585–95

Meta Analysis: Incidence, predictors and outcome of aortic regurgitation after TAVI

Mild AR was also associated with an increased hazard ratio for mortality of 1.829 (95% CI: 1.005 to 3.329)

Study name		Statist	ics for each	n study	
	Hazard ratio	Lower limit	Upper limit	Z-Value	p-Value
Lemos	10.080	1.229	82.673	2.152	0.031
Sinning	2.342	1.066	5.145	2.119	0.034
Kodali	2.110	1.433	3.107	3.782	0.000
Fraccaro	2.064	0.968	4.400	1.876	0.061
Tamburino	0.780	0.499	1.218	-1.092	0.275
All (N=1620)	1.829	1.005	3.329	1.975	0.048

Figure 5 Forest Plot Showing the HRs of Mild AR on Overall Mortality

25 studies reported on predictors of AR post TAVI:

- 1. Implantation depth
- 2. valve undersizing
- 3. Agatston calcium score (r= 0.47, p= 0.001) were identified as predictors.

Athappan et al. J Am Coll Cardiol. 2013; 61:1585–95

More evidence (2): The largest registry (to date)

Incidence, predictors and outcome of aortic regurgitation after TAVI: FRANCE 2 Registry

• TAVI performed in 3 195 consecutive patients at 34 hospitals in France

- Balloon-expandable (BE) devices in 68% (n=1 872), self-expandable (SE) in 32% (n= 897).
- Delivery was femoral (75%) or non femoral (25%).
- Post implant TTE in 2 769 (92%) patients, Median FU= 306 days (Q1-Q3=178-490).

- Based on TTE, post implant AR ≥grade 2 was present in 16%
- Post implant AR was more frequent with SE (22%) than with BE (13%, P=0.0001).

Van Belle et al. Circulation. 2014;129:1415-27

Incidence, predictors and outcome of aortic regurgitation after TAVI: FRANCE2 Registry

A post procedural AR≥ grade 2 was a strong independent predictor of 1-year mortality for BE (HR=2.50; P=0.0001) and SE-TAVI (HR=2.11; P=0.0001)

Van Belle et al. Circulation. 2014;129:1415-27

Incidence, predictors and outcome of aortic regurgitation after TAVI: FRANCE2 Registry

Post procedural AR≥ grade 2 was well tolerated in patients with an AR grade ≥2 at baseline (1-year mortality=7%)

Post procedural AR≥ grade 2 was associated with a high mortality in other subgroups:

- Renal failure (43%)
- AR<grade 2 at baseline (31%)
- Low transaortic gradient (35%)
- Non femoral delivery (45%).

Van Belle et al. Circulation. 2014;129:1415-27

More evidence (3): The illustrative case

Self-expandable transcatheter valve: anterior para-valvular leak

12/03/2010 12:15:34

15

10.

.72

-.72

What is mild aortic regurgitation? VARC II recommendations

Table 4 VARC II Recommendations for Evaluation of Aortic and/or Paravalvular Regurgitation After TAVR

	Mild	Moderate	Severe
Semiquantitative parameters			
Diastolic flow reversal in the descending aorta—pulsed wave	Absent or brief early diastolic	Intermediate	Prominent, holodiastolic
Circumferential extent of prosthetic valve paravalvular regurgitation (%)*	<10	10-29	≥30
Quantitative parameters†			
Regurgitant volume (ml/beat)	<30	30-59	≥60
Regurgitant fraction (%)	<30	30-49	≥50
Effective regurgitant orifice area (cm ²)	0.10	0.10-0.29	≥0.30

*Not well validated and may overestimate severity compared with quantitative Doppler. †For LVOT >2.5 cm, significant stenosis criteria is <0.20. Adapted with permission from Kappetein et al. (66). VARC = Valve Academic Research Consortium; other abbreviations as in Table 1.

Généreux et al. J Am Coll Cardiol. 2013; 61: 1125–36

Mild anterior para-valvular leak according to VARC criteria

12/03/2010 12:16:44

15

10

79 3:26 HR

.72

-.72

Cardiac output = 7,5 l/min

Even mild (acute) AR is poorly tolerated by a small hypertrophied LV

$\sigma c = (1.35 \text{ P x LVIDs/2 Th}) (1 - \{\text{LVIDs }^2/\text{L}^2\})$

 $P = 4 (Vmax)^2 +$ Systolic AP LVIDs/ wall thickness (Th)

L = LV systolic length (A4C)

More evidence (4): The second largest registry

Clinical impact of paravalvular leaks after TAVI: Insights from the PARTNER trials

A total of 2 515 patients underwent TAVI as part of the randomized trial (n=496), RCA registry (n=40), or the NRCA registry (n=1979). 2 434 patients included in this analysis.

B aseline parameters	P-value (all groups)			
	None/trace (<i>n</i> = 1288)	Mild (n = 925)	Moderate/severe ($n = 221$)	
Age	84.17 <u>+</u> 7.05	84.71 <u>+</u> 7.22	85.04 <u>+</u> 7.52	0.10
Male, %	44.3	59.8	70.6	<0.0001
Body surface area	1.78 <u>+</u> 0.24	1.83 ± 0.25	1.82 ± 0.24	<0.0001
Body mass index	27.17 <u>+</u> 6.45	26.53 ± 6.09	25.12 ± 5.52	<0.0001
Logistic EuroSCORE	25.74 <u>+</u> 16.06	26.42 ± 16.24	29.79 ± 17.05	0.004
STS score	11.56 <u>+</u> 4.32	11.31 <u>+</u> 3.85	11.10 ± 3.50	0.17
Diabetes, %	37.6	37.8	30.9	0.14
Carotid disease, %	27.1	26.4	17.1	<0.01
Prior coronary artery bypass grafting, %	43.3	41.5	44.5	0.60
Prior balloon aortic Valvuloplasty, %	24.1	23.0	19.6	0.34
Renal disease ($Cr \ge 2$), %	14.8	18.3	18.6	0.059
Major arrhythmia, %	46.9	54.7	60.0	<0.0001
Permanent pacemaker, %	20.1	22.4	26.4	0.08
Smoking, %	47.8	50.9	44.5	0.15
Chronic obstructive pulmonary disease, %	43.9	45.6	40.3	0.33
Pulmonary hypertension, %	37.6	38.6	48.0	0.02

Kodali et al. Eur Heart J. 2014; doi:10.1093/eurheartj/ehu384

Clinical impact of paravalvular leaks after TAVI: Insights from the PARTNER trials

- At 1 year, there was increased all-cause mortality with worsening PVR: 16% (none/ trace) vs. 22% (mild) vs. 35% (moderate/ severe), P= 0.0001.
- A multivariable analysis indicated that moderate/severe PVR (HR: 2.18, 95% CI: 1.57– 3.02, P = 0.0001) or even mild PVR (HR: 1.37, 95% CI: 1.14–1.90, P = 0.012) were associated with higher late mortality.

Kodali et al. Eur Heart J. 2014; doi:10.1093/eurheartj/ehu384

European Heart Journal doi:10.1093/eurheartj/ehu384 **CLINICAL RESEARCH**

Valvular heart disease

Paravalvular Regurgitation after Transcatheter Aortic Valve Replacement with the Edwards Sapien Valve in the PARTNER trial: characterizing patients and impact on outcomes

Susheel Kodali¹*, Philippe Pibarot², Pamela S. Douglas³, Mathew Williams¹, Ke Xu⁴, Vinod Thourani⁵, Charanjit S. Rihal⁶, Alan Zajarias⁷, Darshan Doshi¹, Michael Davidson⁸, E. Murat Tuzcu⁹, William Stewart⁹, Neil J. Weissman¹⁰, Lars Svensson⁹, Kevin Greason⁶, Hersh Maniar⁷, Michael Mack¹¹, Saif Anwaruddin¹², Martin B. Leon¹, and Rebecca T. Hahn¹

¹Herbert and Sandi Feinberg Interventional Cardiology, Heart Valve Center at Columbia University Medical Center/New York-Presbyterian Hospital, 177 Fort Washington Avenue, New York, NY 10032, USA; ²Laval University, Quebec, QC, USA; ³Duke Clinical Research Institute, Durham, NC, USA; ⁴Cardiovascular Research Foundation, New York, NY, USA; ⁵Emory University School of Medicine, Atlanta, GA, USA; ⁶Mayo Clinic, Rochester, MN, USA; ⁷Washington University School of Medicine, Saint Louis, MO, USA; ⁸Brigham and Women's Hospital, Boston, MA, USA; ⁹Cleveland Clinic, Cleveland, OH, USA; ¹⁰Medstar Health Research Institute, Washington, DC, USA; ¹¹Baylor Healthcare System, Plano, TX, USA; and ¹²Hospital of the University of Pennsylvania, Philadelphia, PA, USA

- The negative impact of moderate/ severe paravalvular leaks after TAVI is widely recognized with a pooled 30-day OR for mortality of 2.95 (95% CI: 1.73 to 5.02) and a 1-year HR of 2.27 (95% CI: 1.84 to 2.89)
- Most studies (including the <u>2 largest registries to date</u>) demonstrate that <u>even mild AR</u> has a negative impact on longterm outcome.
- In a meta analysis, mild AR was associated with a significant increase in mortality at 1-year: HR of 1.9 (95% CI: 1.09 to 3.45)
- Philippe Pibarot is the second author of one major paper supporting the negative impact of mild AR

73bpm

19 cm

● 峨 1 Ss Ao Vm

100.

Small/ hypertrophied LV + ACUTE para-valvular leak = poor tolerance

12/03/2010 12:24:41

15

.72

-.72

LV Adaptation to progressive AS: Concentric hypertrophy (small cavity)

Progressive AV narrowing Transaortic pressure gradient

Concentric hypertrophy