Does minimally invasive mitral valve repair compromise the results?

Khalil Fattouch, MD, PhD.

Department of Cardiothoracic Surgery

Maria Eleonora Hospital – GVM Care & Research

Palermo

"Did we really think we'd be doing surgery the same way we learned in medical school over 20 years ago?"

Bruce Lytle, STS 2004

Minimally Invasive Procedure:

Minimally invasive surgical procedures avoid open invasive approaches in favor of closed or local surgery with less trauma.

Minimally Invasive

Reference Centre

Volume

Repair Rate

Team

CPB

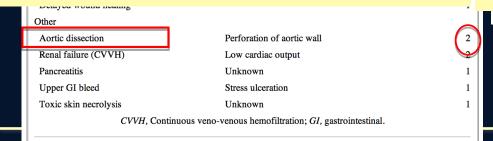
incision

The Journal of Thoracic and Cardiovascular Surgery

Minimally Invasive Port-Access Mitral Valve Surgery F. W. Mohr, MD, PhD, V. Falk, MD, A. Diegeler, MD, T. Walther, MD, J. A. M. van Son, MD, PhD, R. Autschbach, MD, PhD, Hans G. Borst, MD

1998;115:567-571

Table 3. Perioperative complications			
Complications	Cause	1	n
Cardiac			
Prolonged catecholamine support (<3 days)		!	9
Phythm disorders	Supraventricular tachycardia		Q.
Mortality	9.8% (5/5	1)	


Conversion to Sternotomy 3.9% (2/51)

Aortic Dissection 3.9% (2/51)

Five patients (9.8%) died in the perioperative period or at follow-up. One patient with long-term oral cortisone therapy died on postoperative day 12 after he had been

Doubts

- **✓ Technical Difficulties**
- **✓ Risk of Complications**
 - ✓ Duration of Surgery
 - √ Costs-Benefits

volume of cases, so mai mey can gam sufficient experience with this hover procedure.

Minimally Invasive Approaches

Problems

- Too complex
- Port access, endoscopic, robotic
- Difficult learning curve
- Too expensive
- Morbidity and Mortality

Minimally Invasive Approaches

Solutions

- Simplify the complex procedures
- Limit robotics and fiberoptics
- Make it reproduceble in hands of surgeons and use conventional skills
- Reduce costs
- Improve outcomes

The golden age of minimally invasive cardiothoracic surgery: current and future perspectives

Alexander Iribarne¹, Rachel Easterwood¹, Edward YH Chan¹, Jonathan Yang¹, Lori Soni¹, Mark J Russo², Craig R Smith¹, and Michael Argenziano^{1,†}

	Partial sternotomy	Rightijii	ni-thoracotomy
Cosmesis	++	+++	
Postoperative pain	++	++	
Postoperative NSR	++	+++	
Short ICU length of stay	+++	++++	
Short hospital length of stay	+++	++++	
Transfusion requirement	+++	+++	
Wound infection	++	+++	
Cost	++++	+++	

Division of Cardiothoracic Surgery, Department of Surgery, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA

² Division of Cardiac & Thoracic Surgery, University of Chicago Medical Center, Chicago, IL, USA

Mitral Valve Surgery Can Now Routinely Be Performed Endoscopically

Filip P. Casselman, Sam Van Slycke, Francis Wellens, Raphael De Geest, Ivan Degrieck, Frank Van Praet, Yvette Vermeulen and Hugo Vanermen Circulation 2003;108;II-48-II-54

Minimal invasive mitral valve repair for mitral regurgitation: result 1339 CS is feasible, reproducible and Joerg Seeburger, Michael Andrew Borger, Volkmar Falk, Thor Czesla, Thomas Walther, Nicolas Doll and Friedric' Minimally invasive mitral valve sur **∡** meta-analysis Minimally invasi Eugene A. Gr Comparisor asive mitral valve surgery for posterior,

ger, Nicolas Doll, Thomas Walther, Jurgen Passage, anar Falk and Friedrich W. Mohr r J Cardiothorac Surg 2009;36:532-538

valve disease

Jos

reelish, Lawrence H. Cohn, Marzia Leacche, Michael Mitchell, Alexandros Karavas, John Fox, John G. Byrne, Sary F. Aranki and Gregory S. Couper J Thorac Cardiovasc Surg 2003;126:365-373

European Journal of Cardio-thoracic Surgery 34 (2008) 943-952

EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY

www.elsevier.com/locate/ejcts

Review

Minimally invasive mitral valve surgery: a systematic review and meta-analysis

Paul Modi, Ansar Hassan, Walter Randolph Chitwood Jr.*

East Carolina Heart Institute, Greenville, NC, USA

Received 23 May 2008; received in revised form 19 July 2008; accepted 28 July 2008; Available online 30 September 2008

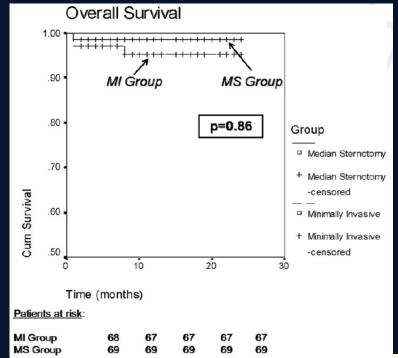


Table 5
Studies reporting long-term results of minimally invasive mitral valve surgery

Study, year, reference	Institution	Survival	Freedom from re-operation
Gulielmos et al. (2000) [43]	Dresden	93.5% at 3.3 years	
Casselman et al. (2003) [34]	Aalst	$95.4\pm1.7\%$ at 4 years	91 \pm 3.5% at 4 years
Greelish et al. (2003) [44]	Brigham	95% at 5 years	92% at 5 years
Walther et al. (2004) [39]	Leipzig	83% at 6.8 years	_
Mishra et al. (2005) [40]	New Delhi	99% at 3.2 years	99.3% at 3.2 years
Aybek et al. (2006) [41]	Frankfurt	90.7% at 6.3 years	96.2% at 6.3 years
Torracca et al. (2006) [42]	Milan	100% at 2.3 years	95.2% at 4 years

standard deviation. (conv. = conventional mitral valve surgery; MIS = minimally invasive mitral valve surgery.)

GOOD INTERMEDIATE and LONG TERM RESULTS


Speziale et al

Acquired Cardiovascular Disease

Results of mitral valve repair for Barlow disease (bileaflet prolapse) via right minithoracotomy versus conventional median sternotomy: A randomized trial

Giuseppe Speziale, MD,^a Giuseppe Nasso, MD,^a Giampiero Esposito, MD,^b Massimiliano Conte, MD,^b Ernesto Greco, MD,^c Khalil Fattouch, MD,^d Flavio Fiore, MD,^a Mauro Del Giglio, MD,^e Roberto Coppola, MD,^a and Luigi Tavazzi, MD^e

Minimal invasive mitral valve repair for mitral regurgitation: results of 1339 consecutive patients[★]

Joerg Seeburger*, Michael Andrew Borger, Volkmar Falk, Thomas Kuntze, Markus Czesla, Thomas Walther, Nicolas Doll, Friedrich Wilhelm Mohr

	Patients	
	n	%
Ring annuloplasty	1301	96.3
Complete/partial ring	1045/256	78.0/22.0
Ring size (mm)	31.1 ± 3.6	
Quadrangular resection AML	29	2.2
Quadrangular resection PML	384	28.7
Sliding plasty AML	6	0.4
Sliding plasty PML	61	4.6
Neo-chordae (loops)	511	38.1
Neo-chordae AML (loops)	260	19.4
Neo-chordae PML (loops)	415	30.1
Chordae transfer	113	8.4
Commissural suture anterolateral	32	2.4
Commissural suture posteromedial	30	2.2
Cleft repair	19	1.4
Alfieri plasty	44	3.3
Tumor resection	6	0.4

European Journal of Cardio-thoracic Surgery 34 (2008) 760-765

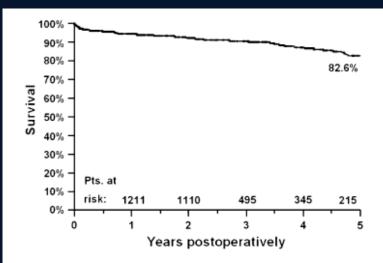


Fig. 1. Kaplan—Meier curve for survival following minimal invasive MV repair for mitral regurgitation.

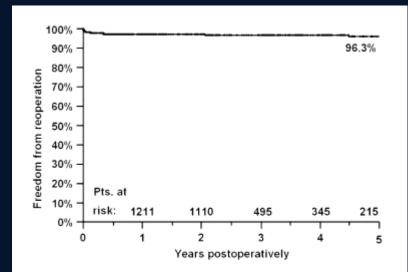


Fig. 2. Kaplan—Meier curve for freedom from MV related reoperation following minimal invasive MV repair.

Comparison of outcomes of minimally invasive mitral valve surgery for posterior, anterior and bileaflet prolapse[☆]

Joerg Seeburger*, Michael A. Borger, Nicolas Doll, Thomas Walther, Jurgen Passage, Volkmar Falk, Friedrich W. Mohr

European Journal of Cardio-thoracic Surgery 36 (2009) 532-538

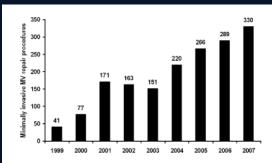
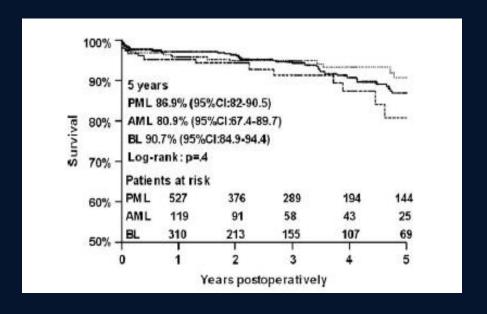
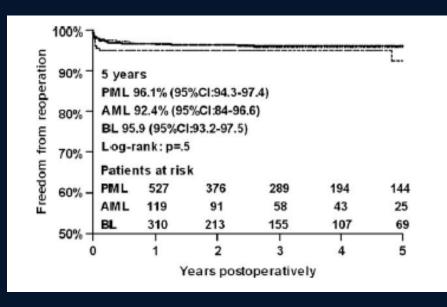


Fig. 1. Number of minimal invasive mitral valve repair procedures performed per year at Leipzig Heart Center over the study period.

-	PML (n = 672)		AML (n = 156)		BL (n = 402)	
	[n]	%	[n]	%	[n]	%
Annulus dilatation	565	84.1	125	80.1	344	85.6
Chordae elongation	435	64.7	103	66	322	80.1
Chordae rupture	264	39.3	60	38.5	219	54.5
Calcification PML	21	3.1	4	2.6	25	6.2
Calcification AML*	9	1.3	9	5.8	11	2.7
Calcification annulus	27	4	3	1.9	22	5.5
Cleft	0	0	1	0.6	3	0.7
Rupture papillary muscle	10	1.5	3	1.9	25	6.2
Additional restriction	15	0.2	16	10.3	12	3
Commissural closure	3	0.4	2	1.3	4	1
Endocarditis *	17	2.5	11	7.1	12	3


Postoperative	outcomes aft	ter mitral	valve surgery	for isolated	anterior.	posterior.	or bileaflet prolapse.	


-							
	PML (n = 672)		AML (n = 156)		BL (n = 402)		
	[n]	%	[n]	%	[n]	%	
Postop LVEF	57.8 ± 9.9		56.6 ± 11.4		58.3 ± 10.3		
Postop MR	0.28 ± 0.54		0.31 ± 0.57		0.35 ± 0.58		
Hospital stay	11.3 ± 6.4		12.9 ± 9.2		11.4 ± 13.6		
Stroke	18	2.7	4	2.6	8	2.0	
Low cardiac output syndrome	20	3.0	5	3.2	13	3.2	
Reoperation for bleeding	38	5.7	8	5.1	18	4.5	
30-day mortality	10	1.5	4	2.6	9	2.2	

Comparison of outcomes of minimally invasive mitral valve surgery for posterior, anterior and bileaflet prolapse*

Joerg Seeburger*, Michael A. Borger, Nicolas Doll, Thomas Walther, Jurgen Passage, Volkmar Falk, Friedrich W. Mohr

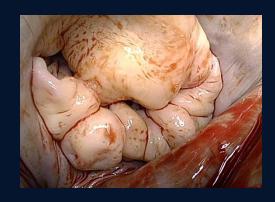
European Journal of Cardio-thoracic Surgery 36 (2009) 532-538

Silvana B:

Good Team - Best Performance


Role of Cardiologists in developing Mitral Repair

Repair techniques - evolving surgical philosophy and practice


Refer patients to high skill surgeons

To play a key role in developing a mitral valve reference center

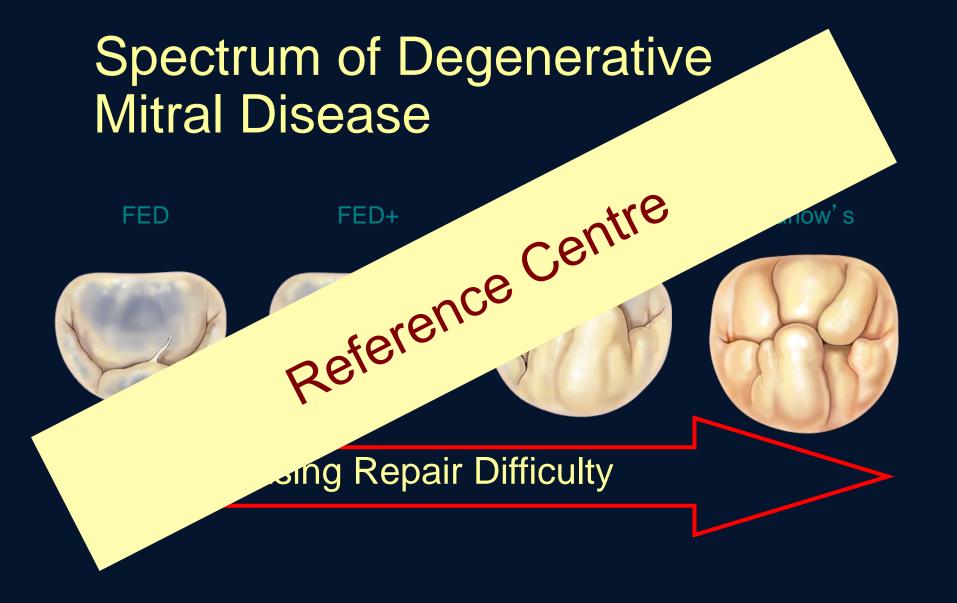
Degenerative Mitral Regurgitation: Who Should Operate?

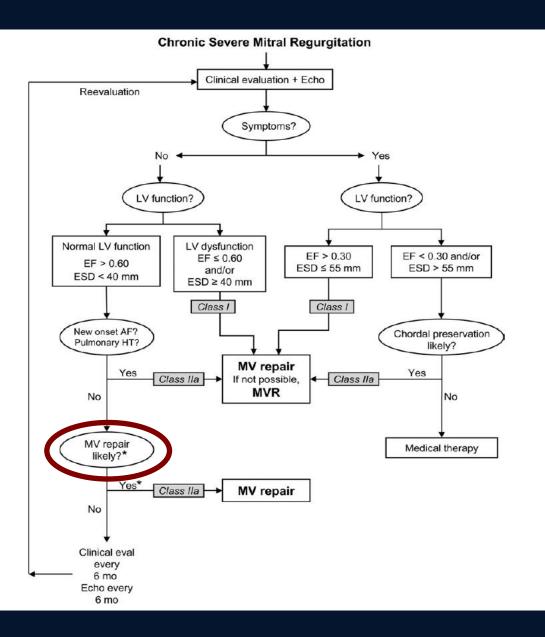
Easy


Moderate

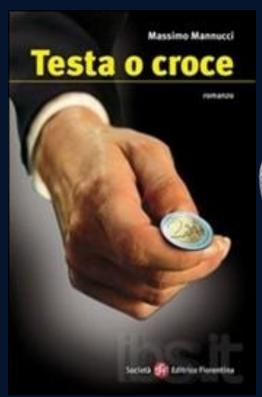
high experience

Reference Mitral Valve Centers


Repair rates > 90% in Most Centers Today


Type I

Type II P2



Why Mitral Valve Repair rate will be Predictable?

Trends in Mitral Valve Surgery in the United States: Results From The Society of Thoracic Surgeons Adult Cardiac Database

James S. Gammie, MD, Shubin Sheng, PhD, Bartley P. Griffith, MD, Eric D. Peterson, MD, J. Scott Rankin, MD, Sean M. O'Brien, PhD, and James M. Brown, MD

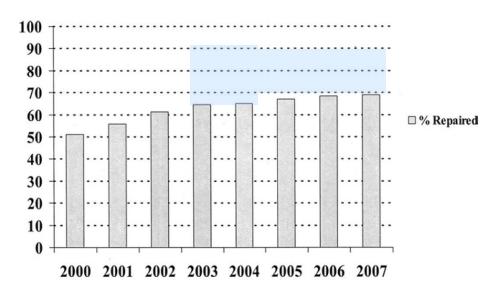
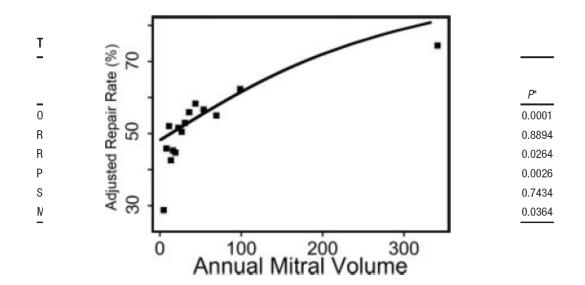


Fig 4. Mitral valve repair rates, percent repaired (gray bars), for isolated primary mitral regurgitation, for the years 2000 to 2007 (p < 0.0001).

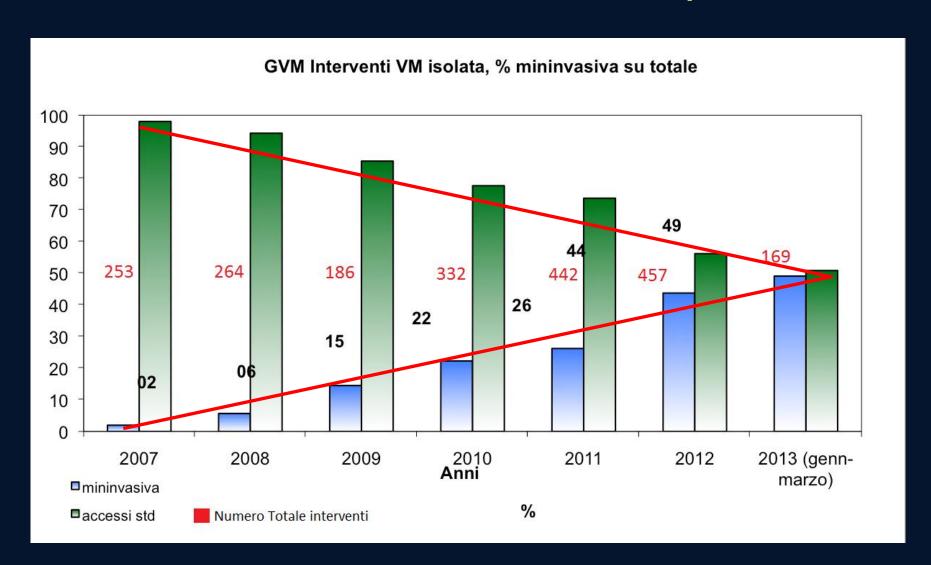
INTERVENTIONAL CARDIOLOGY AND SURGERY

Mitral repair best practice: proposed standards

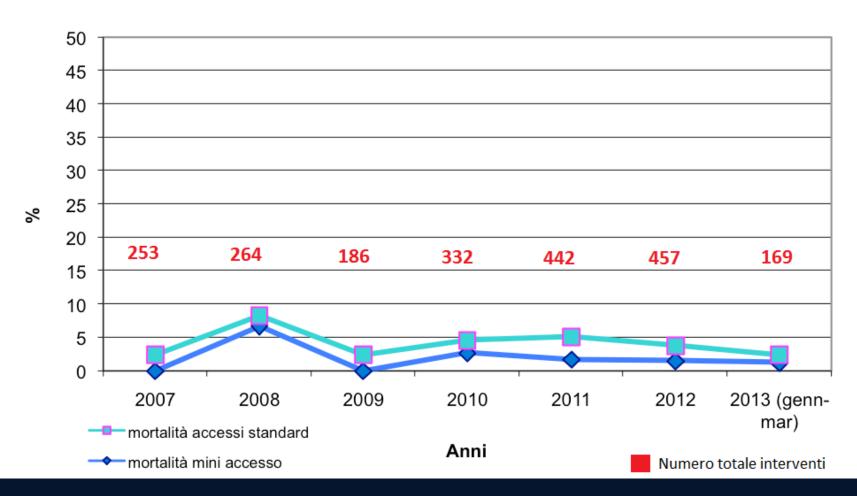
B Bridgewater, T Hooper, C Munsch, S Hunter, U von Oppell, S Livesey, B Keogh, F Wells, M Patrick, J Kneeshaw, J Chambers, N Masani, S Ray

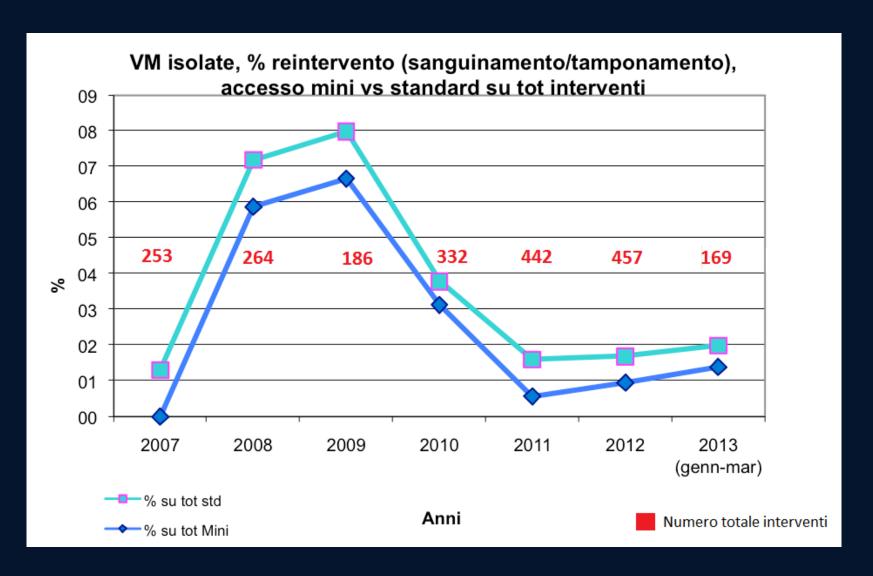

Volume thresholds

Surgeons undertaking mitral repair surgery should be doing more than 25 repairs each year

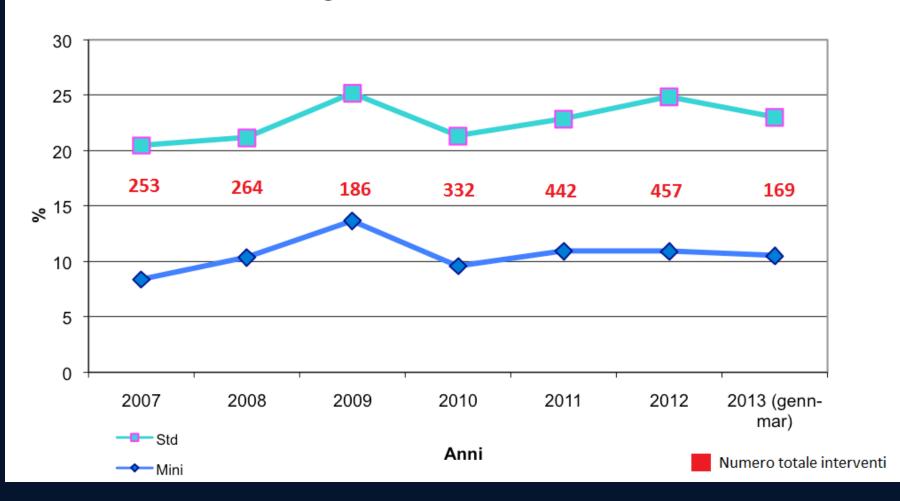

Hospitals undertaking mitral repair surgery should be doing more than 50 repairs each year

Cardiovascular Surgery

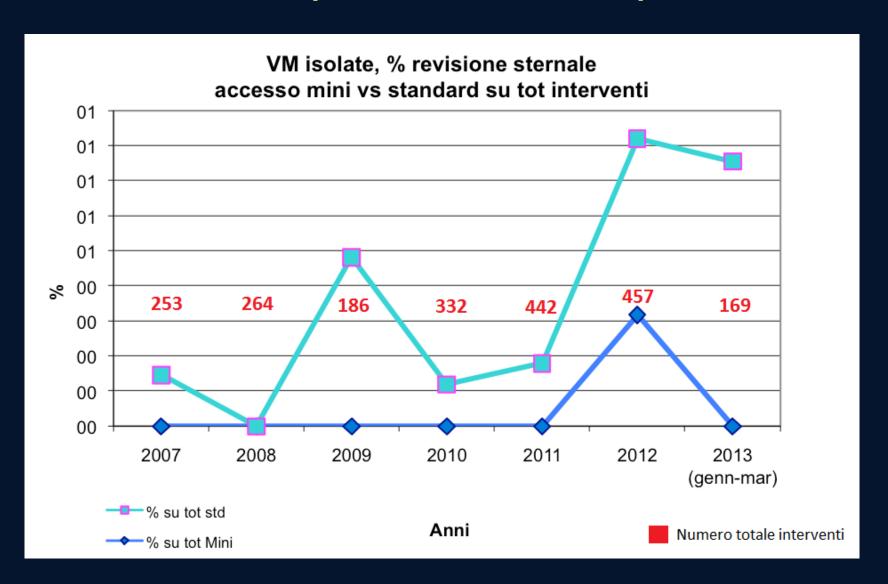

Influence of Hospital Procedural Volume on Care Process and Mortality for Patients Undergoing Elective Surgery for **Mitral Regurgitation**

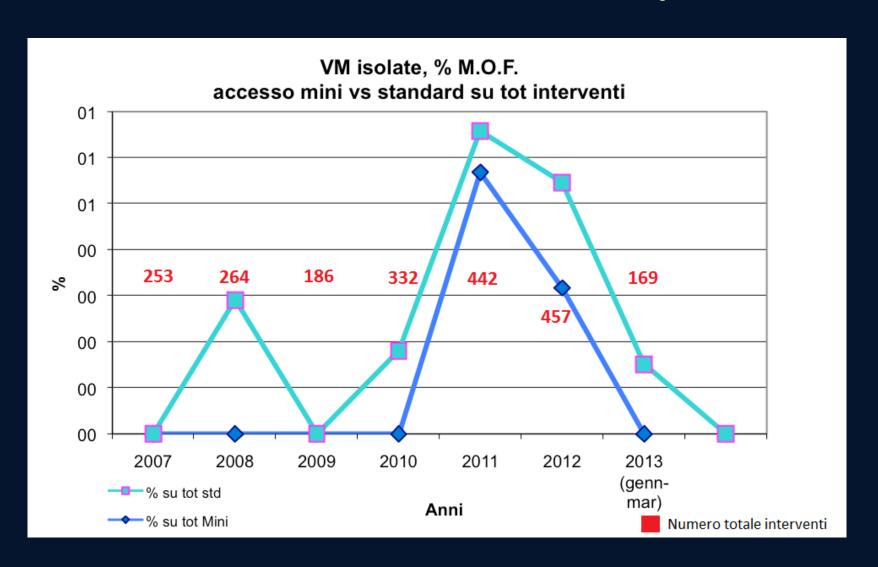


Can we start a minimally invasive mitral valve repair program without compromising the surgical results?



VM isolate, mortalità accesso mini vs standard





Anthea Hospital & GVM Experience

Take Home Messages

- . Minimally invasive surgery represents a safe and effective approach
- . No differences in short- or long-term results compared with standard sternotomy
- . MIMV is associated with lower perioperative complications
- . With regard to outcome measures such as quality of life, minimally invasive approach may be the standard to compare evolving percutaneous technologies.

Take Home Messages

- Expansion of minimally invasive surgery
- Standarize the minimally approaches
- Focus on perfection of repair
- Increase number of Reference Mitral Valve Repair Centers