Low Flow Low Gradient Aortic Stenosis

with preserved LVEF

An elusive concept

Gilbert Habib La Timone Hospital Marseille - France

Low Flow Low Gradient Aortic Stenosis

with preserved LVEF

Does it exist?

Does AVR help?

Gilbert Habib La Timone Hospital Marseille - France

1704 severe AS with normal LVEF

Eleid MF- Circulation. 2013;128:1781-1789

1704 severe AS with normal LVEF

Eleid MF- Circulation. 2013;128:1781-1789

1704 severe AS with normal LVEF

Eleid MF- Circulation. 2013;128:1781-1789

Paradoxical Low-Flow, Low-Gradient Severe Aortic Stenosis Despite Preserved Ejection Fraction Is Associated With Higher Afterload and Reduced Survival

Hachicha Z, Pibarot P- Circulation 2007; 115: 2856-64

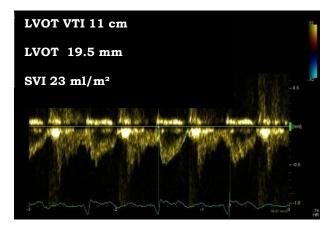
Background—Recent studies and current clinical observations suggest that some patients with severe aortic stenosis on the basis of aortic valve area may paradoxically have a relatively low gradient despite the presence of a preserved left ventricular (LV) ejection fraction. The objective of the present study was to document the prevalence, potential mechanisms, and clinical relevance of this phenomenon.

Methods and Results—We retrospectively studied the clinical and Doppler echocardiographic data of 512 consecutive patients with severe aortic stenosis (indexed aortic valve area $\leq 0.6 \text{ cm}^2 \cdot \text{m}^{-2}$) and preserved LV ejection fraction $(\geq 50\%)$. Of these patients, 331 (65%) had normal LV flow output defined as a stroke volume index >35 mL \cdot m², and 181 (35%) had paradoxically low-flow output defined as stroke volume index \leq 35 mL \cdot m⁻². When compared with normal flow patients, low-flow patients had a higher prevalence of female gender (P < 0.05), a lower transvalvular gradient (32 ± 17 versus 40 ± 15 mm Hg; P<0.001), a lower LV diastolic volume index (52 ± 12 versus 59 ± 13 mL \cdot m⁻²; P < 0.001), lower LV ejection fraction (62±8% versus 68±7%; P < 0.001), a higher level of LV global afterload reflected by a higher valvulo-arterial impedance (5.3 ± 1.3 versus 4.1 ± 0.7 mm Hg · mL⁻¹ · m⁻²; P<0.001) and a lower overall 3-year survival (76% versus 86%; P=0.006). Only age (hazard ratio, 1.04; 95% CI, 1.01 to 1.08; P=0.025), valvulo-arterial impedance >5.5 mm Hg · mL⁻¹ · m⁻² (hazard ratio, 2.6; 95% CI, 1.2 to 5.7; P=0.017), and medical treatment (hazard ratio, 3.3; 95% CI, 1.8 to 6.7; P=0.0003) were independently associated with increased mortality. Conclusion—Patients with severe aortic stenosis may have low transvalvular flow and low gradients despite normal LV ejection fraction. A comprehensive evaluation shows that this pattern is in fact consistent with a more advanced stage of the disease and has a poorer prognosis. Such findings are clinically relevant because this condition may often be misdiagnosed, which leads to a neglect and/or an underestimation of symptoms and an inappropriate delay of aortic valve replacement surgery. (Circulation. 2007;115:2856-2864.)

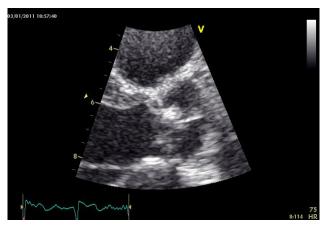
Low Flow Low Gradient AS Does it exist ?

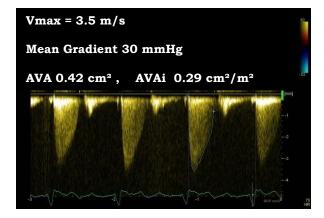
Low Flow Low Gradient AS Does it exist ?

Yes, but unfrequent

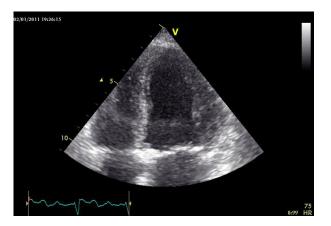


79 year-old woman, BSA 1.45 m², no CAD


LVEF = 68%, LVH

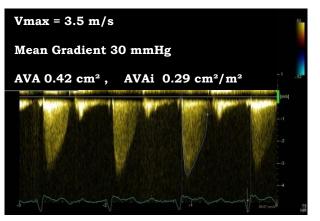


Low cardiac output Aix*Marseille Université


Calcified aortic valve

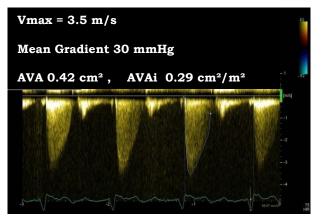
Severe AS, Low Gradient

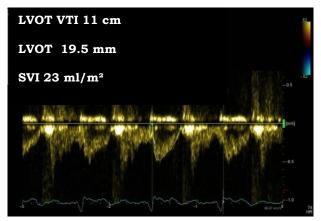
Normal LVEF



Normal LVEF

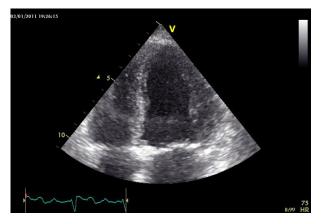
Low gradient

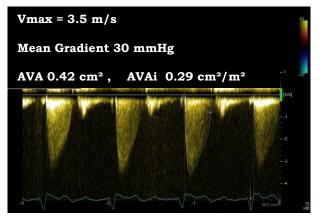


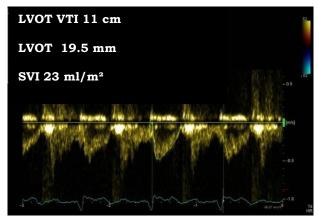


Normal LVEF

Low gradient


Low flow

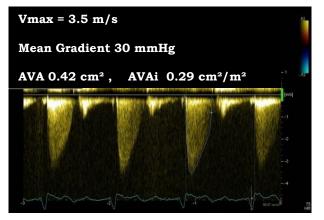


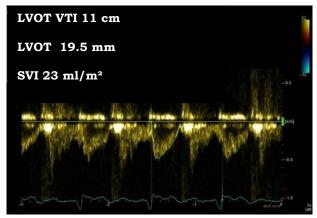


Normal LVEF

Low gradient

Low flow

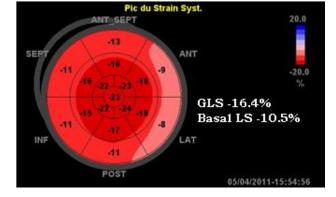




Normal LVEF

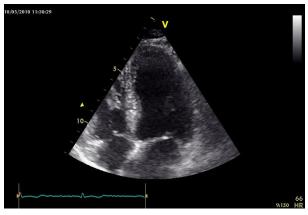
Low gradient

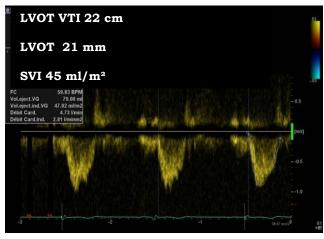
Low flow


Severe aortic stenosis Paradoxical low flow

LV longitudinal dysfunction

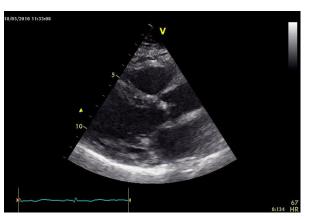
Adda J , Habib G – Circulation CV Imaging 2012



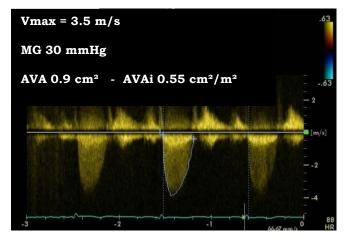


61 year-old woman, BSA 1.64 m², no CAD

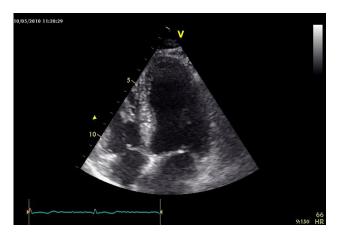
LVEF = 63% , moderate LVH

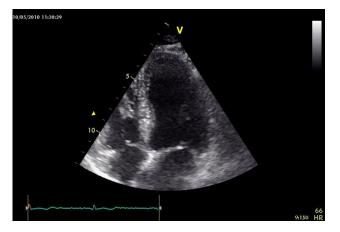


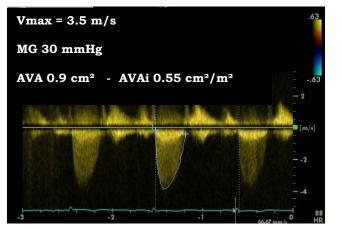
Normal cardiac output



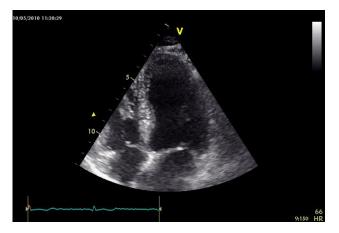
Aix*Marseille

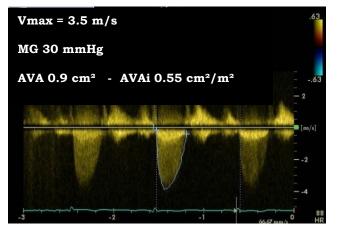

Calcified aortic valve

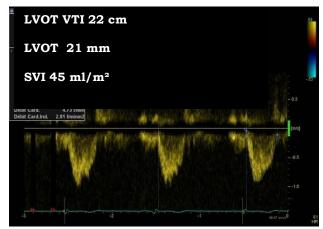

Normal LVEF



Normal LVEF

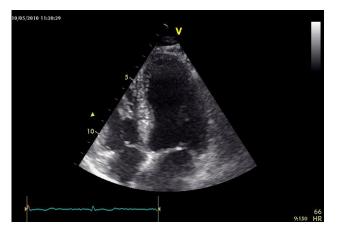

Low gradient

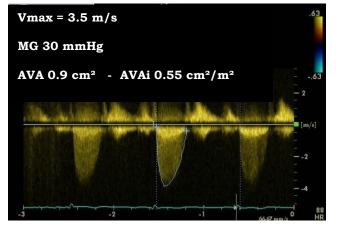


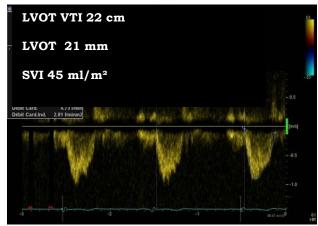


Normal LVEF

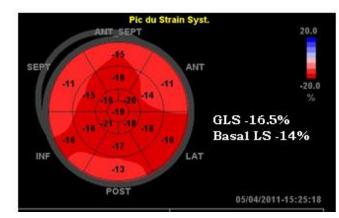
Low gradient


Normal Flow





Normal LVEF



Low gradient

Normal Flow

Adda J , Habib G – Circulation CV Imaging 2012

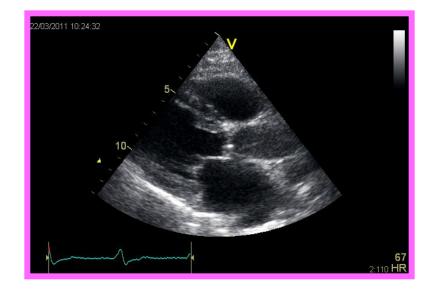
1. Are you sure that both have severe AS?

2. Will you send both patients to surgeon?

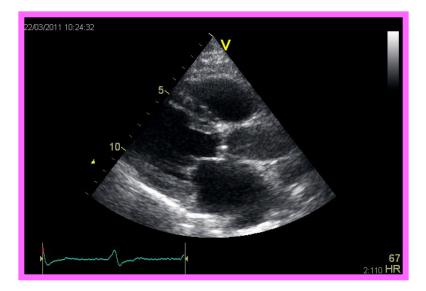
LF LG AS: 3 important questions

- **1.** Was LVOT correctly measured ?
- 2. Does the patient have both low gradient and low flow ?
- **3.** Are the proposed cut-off values consistent ?

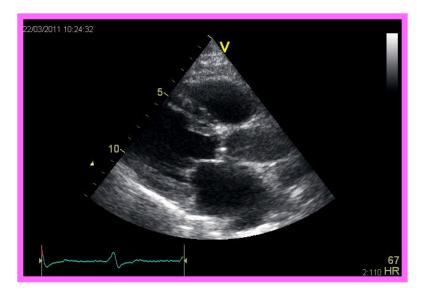
- underestimation of LVOT diameter leads to underestimation of AVA
- underestimation of stroke volume leads to false diagnosis of LFLG AS



- underestimation of LVOT diameter leads to underestimation of AVA
- underestimation of stroke volume leads to false diagnosis of LFLG AS



- underestimation of LVOT diameter leads to underestimation of AVA
- underestimation of stroke volume leads to false diagnosis of LFLG AS



- underestimation of LVOT diameter leads to underestimation of AVA
- underestimation of stroke volume leads to false diagnosis of LFLG AS

- re-check LVOT measurement
- perform TEE (and look at the valve !!)
- use alternative techniques to assess AS severity (CT scan, catheterization)

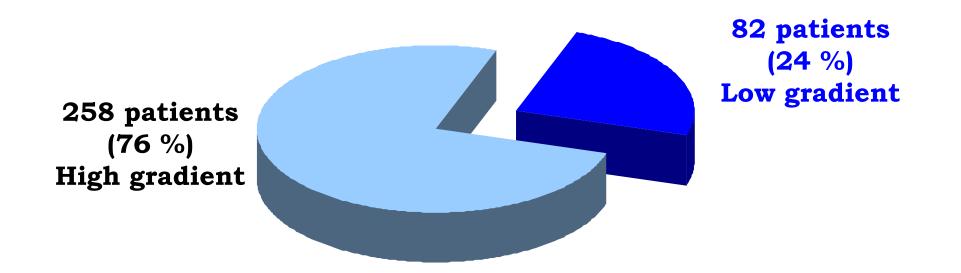
LF LG AS: 3 important questions

1. Was LVOT correctly measured ?

- 2. Does the patient have both low gradient <u>and</u> low flow ?
- **3.** Are the proposed cut-off values consistent ?

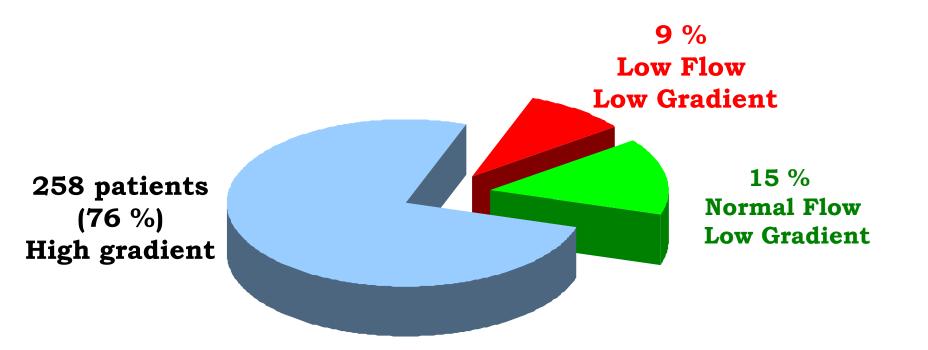
Adda J , Habib G – Circulation CV Imaging 2012

- 340 patients severe AS AVA_i \leq 0.6 cm²/m² , LVEF > 50%
- 5 centers: Marseille, Liège, Rennes, Bordeaux, Montpellier



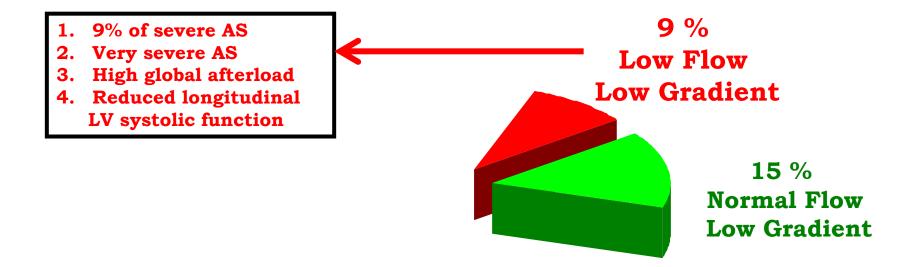
Adda J , Habib G – Circulation CV Imaging 2012

• 340 patients severe AS - AVA_i \leq 0.6 cm²/m² , LVEF > 50%



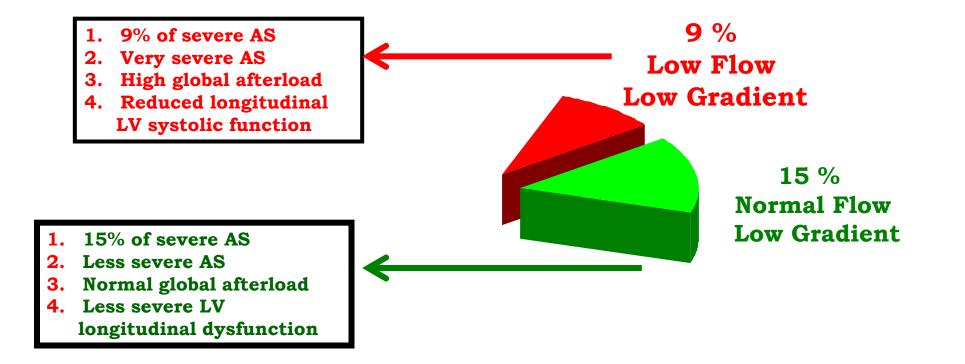
Adda J, Habib G – Circulation CV Imaging 2012

• 340 patients severe AS - AVA_i \leq 0.6 cm²/m² , LVEF > 50%



Adda J , Habib G – Circulation CV Imaging 2012

• 340 patients severe AS - AVA_i $\leq 0.6 \text{ cm}^2/\text{m}^2$, LVEF > 50%



Adda J , Habib G – Circulation CV Imaging 2012

• 340 patients severe AS - AVA_i $\leq 0.6 \text{ cm}^2/\text{m}^2$, LVEF > 50%

ARTICLE IN PRESS

Journal of the American College of Cardiology © 2012 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. xx, No. x, 2012 ISSN 0735-1097/\$36.00 doi:10.1016/j.jacc.2011.08.072

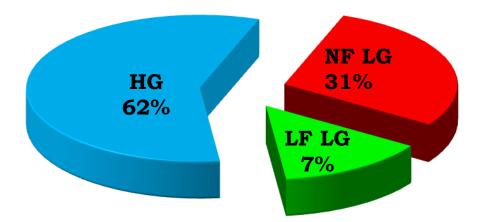
Clinical Outcome in Asymptomatic Severe Aortic Stenosis

Insights From the New Proposed Aortic Stenosis Grading Classification

Patrizio Lancellotti, MD, PHD,* Julien Magne, PHD,* Erwan Donal, MD, PHD,† Laurent Davin, MD,* Kim O'Connor, MD,*‡ Monica Rosca, MD,* Catherine Szymanski, MD,* Bernard Cosyns, MD, PHD,§ Luc A. Piérard, MD, PHD*

Liège, and Brussels, Belgium; Rennes, France; and Quebec, Canada

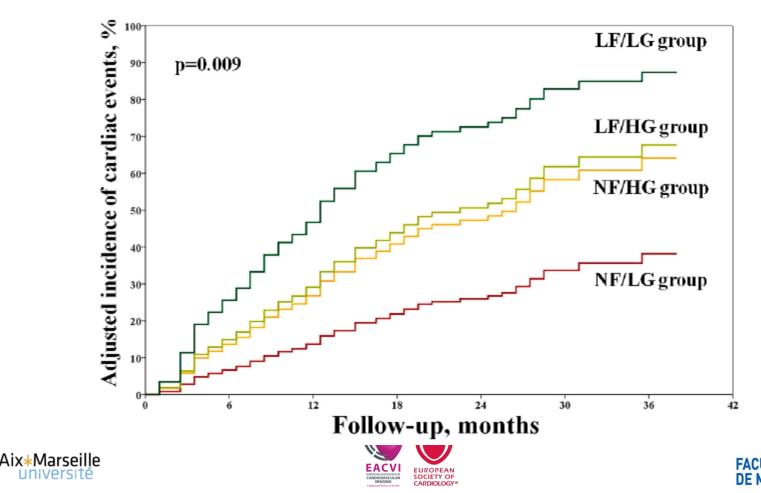
L.



LFLG AS: results

Magne J, Lancellotti P, Donal E – Euroecho 2011 – JACC 2012

• 150 consecutive patients with asymptomatic severe AS and normal exercise test.



New classification of AS

Lancellotti P, JACC 2012

• 150 consecutive patients with asymptomatic severe AS and normal exercise test.

LF LG AS: 3 important questions

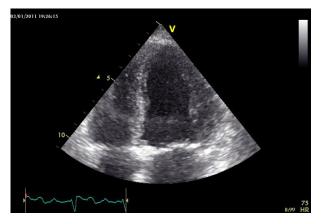
- **1.** Was LVOT correctly measured ?
- 2. Does the patient have both low gradient and low flow ?

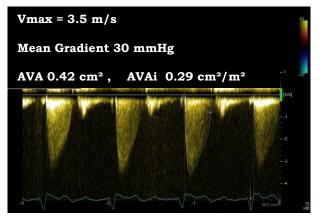
3. Are the proposed cut-off values consistent ?

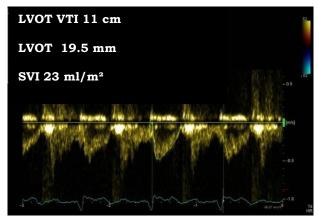
Low-Gradient "Severe" Aortic Stenosis With Normal Systolic Function Time to Refine the Guidelines?

William A Zoghbi -Circulation. 2011;123:838-840

- 1. « When one combines the current prospective clinical data with earlier hemodynamic echo and invasive data that relate maximal velocity and gradients across the valve for severe AS, a good argument can be made for bringing the cut-off valve area for severe AS closer to 0.8 cm² (index 0.45 cm^{2}/m^{2}).
- **2.** A refinement of the guidelines in this respect would help harmonize the definition of severe AS....
- **3.** ...and would appropriately reclassify some patients with "severe" AS into moderate severity"



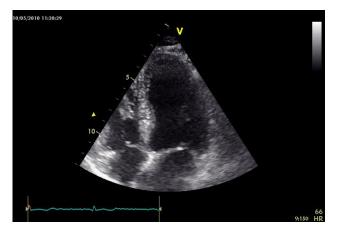


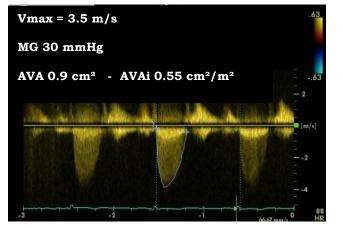

Patient 1: recent pulmonary edema

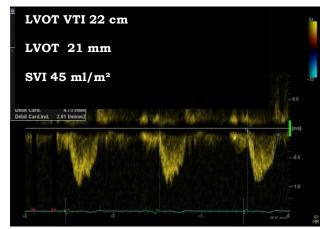
Normal LVEF

Low gradient

Low flow






Patient 2: dyspnea on exertion

Normal LVEF

Low gradient

Normal Flow

LFLG aortic stenosis

1. Does it really exist ?

2. Does AVR help ?

Are patients with severe AS and low gradient improved by surgery ?

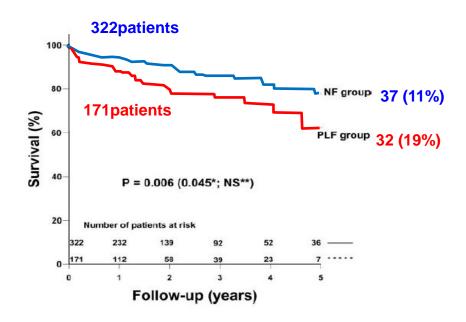
I don't know !!!

Studies on the role of surgery in LFLG AS

	Author	LF / LG AS (n)	AVR (n)
1.	Hachicha Z - Circulation 2007 ;	181 LF AS	(80 AVR)
2.	Barasch E – J Heart Valve Dis 2008;	47 LG AS	(15 AVR)
3.	Pai RG - Ann Thorac Surg 2008;	52 LGAS	(18 AVR)
4.	Dumesnil JG - Eur Heart J 2009;	123 LFLG AS	(44 AVR)
5.	Tarantini G - Ann Thorac Surg 2011;	102 LFLG AS	(73 AVR)
6.	Jander N – Circulation 2011;	435 LG AS	(183 AVR)
7.	Clavel AM – JACC 2012;	187 LFLG AS	(83 AVR)
8.	Ozkan A – Circulation 2013;	260 LG AS	(123 AVR)

Limitations of previous studies

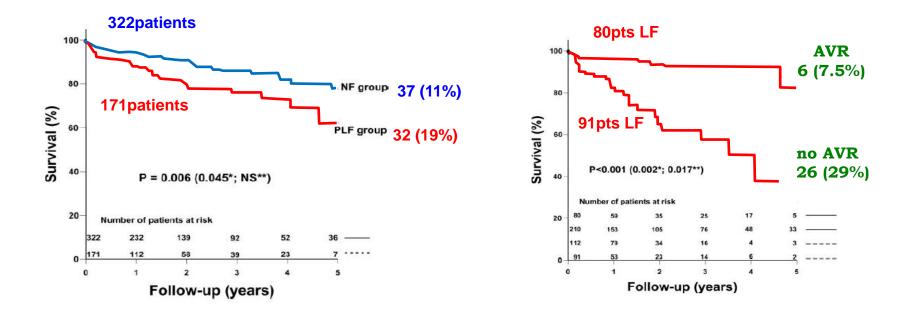
- 1. Retrospective, non randomized
- 2. Few studies, few patients, few events
- 3. Symptomatic status unknown in the majority
- 4. Various definitions of AS severity and of LF and/or LG AS
- 5. Reasons for surgery / no surgery unknown in the majority
- 6. Influence of associated CABG
- 7. Comorbidities not taken into account



Effect of surgery on LF AS

Hachicha Z - Circulation 2007; 115: 2856-64

493 severe AS and LVEF > **50%**



Effect of surgery on LF AS

Hachicha Z - Circulation 2007; 115: 2856-64

493 severe AS and LVEF > 50%

171patients with Low-Flow AS

Surgery does not improve outcome

Jander N – Circulation 2011; 123: 887-95

- 1. prospective study (SEAS study)
- 2. 1525 asymptomatic AS
- 3. 435 LG severe AS (MG < 40 mmHg, AVA < 1 cm²)
- 4. 184 moderate AS (MG 25-40 mmHg, AVA < 1.5-1 cm²)
- 5. 45 +/-14 months follow-up
- 6. Significant CAD excluded

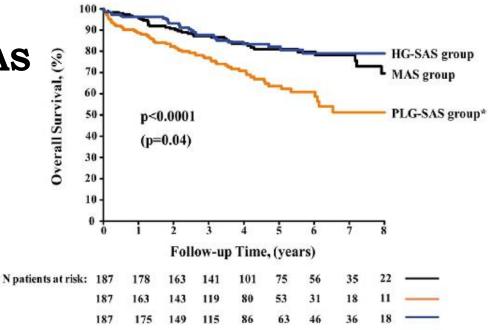
LG AS is no more than a moderate AS

- 435 LG SAS
- 35 HG SAS
- 184 moderate AS

- No significant difference in major cardiovascular events or death
- No beneficial effect of surgery

B **Major Cardiovascular Events** 1.0 Low Gradient 'Severe' Aortic Stenosis Moderate Aortic Stenosis Event-free Survival Severe Aortic Stenosis 0.8 0.6 0.4 0.2 0.0 12 24 36 0 48 60 Months of Follow-up No. at Risk LGSAS 435 413 364 296 225 17 Moderate AS 184 175 146 122 93 10 Severe AS 35 33 21 16 11 0

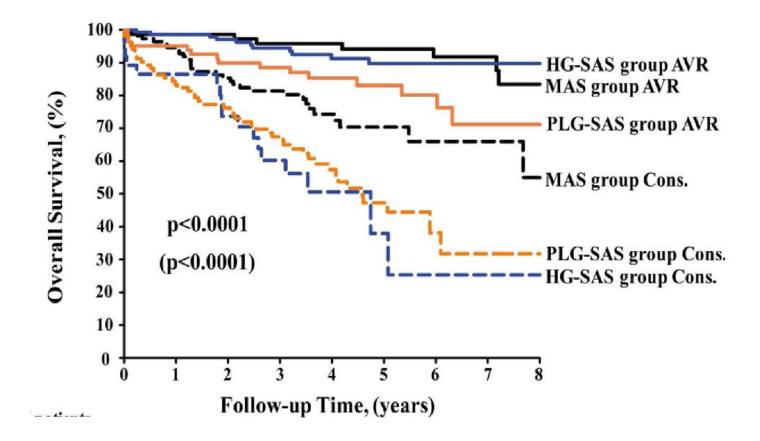
Jander N – Circulation 2011; 123: 887-95



Surgery is beneficial ?

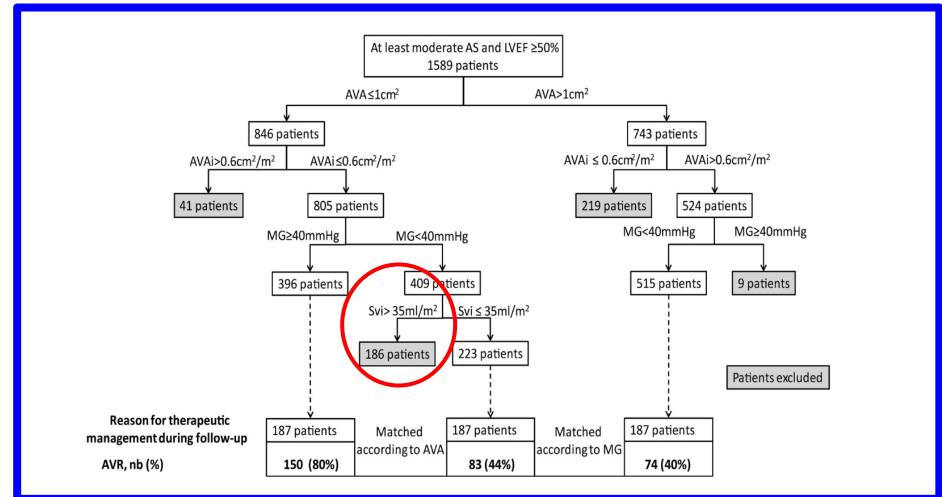
Clavel MA - J Am Coll Cardiol 2012

- 187 PLG SAS
- 187 HG SAS
- 187 moderate AS



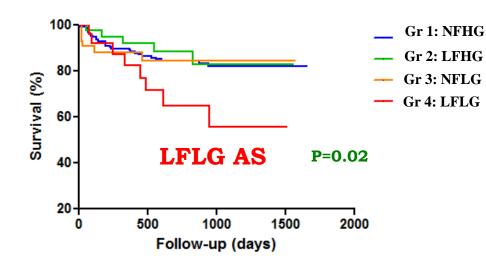
Surgery is beneficial?

Clavel MA - J Am Coll Cardiol 2012



Surgery is beneficial ?

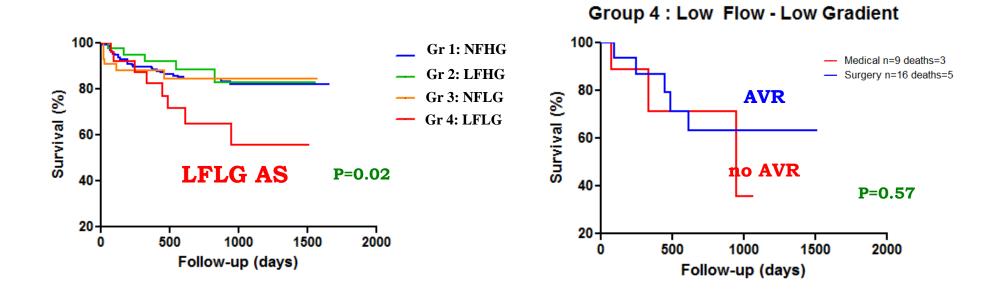
Clavel MA - J Am Coll Cardiol 2012



Survival is worse in LFLG

Adda J, Habib G – Euroecho 2011

Survival in Low Flow Low Gradient vs other groups



Survival is worse in LFLG

Adda J, Habib G – Euroecho 2011

Survival in Low Flow Low Gradient vs other groups

Take-home messages

- 1. LF LG aortic stenosis is a real entity observed in 10% cases of severe AS with normal LVEF
- 2. These patients present with high global afterload and reduced longitudinal systolic function, as assessed by 2D strain
- 3. They are associated with worse prognosis

4. They must be diffentiated from patients with NFLG aortic stenosis

5. Benefit of surgery is not proven in LG aortic stenosis but it is probably beneficial in selected symptomatic patients with both low flow and low gradient AS

Conclusion

Paradoxical Low-Flow, Low-Gradient Aortic Stenosis

Adding New Pieces to the Puzzle*

"Additional outcome studies are needed to determine

the most appropriate modality and timing of treatment

in patients with low-flow, low-gradient AS......"

Conclusion

Paradoxical Low-Flow, Low-Gradient Aortic Stenosis

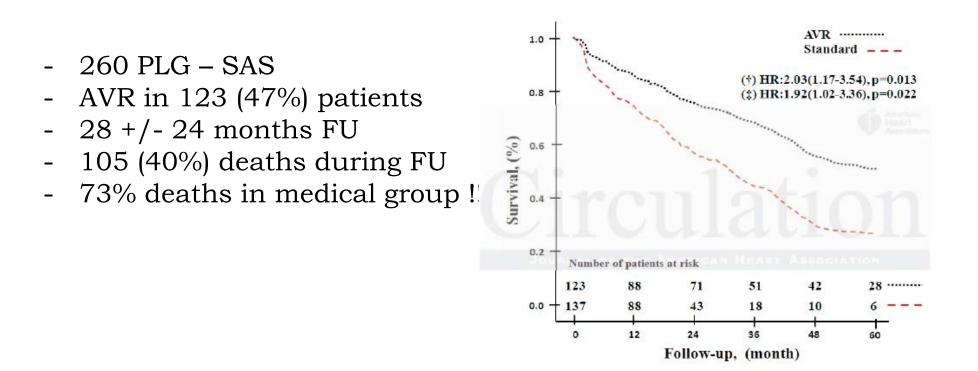
Pibarot P, Dumesnil JG - JACC 2011; 58: 413-5

Adding New Pieces to the Puzzle*

"Additional outcome studies are needed to determine

the most appropriate modality and timing of treatment

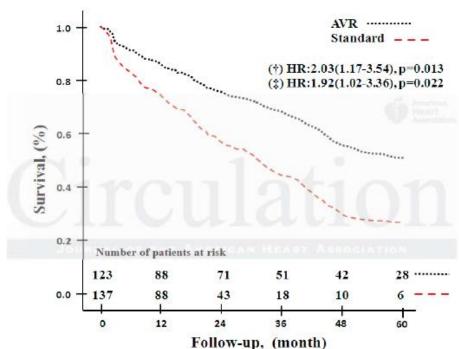
in patients with low-flow, low-gradient AS......"



Is surgery beneficial?

Ozkan A – Circulation 2013

Medical therapy = 2-fold increase in mortality than AVR



Is surgery beneficial ?

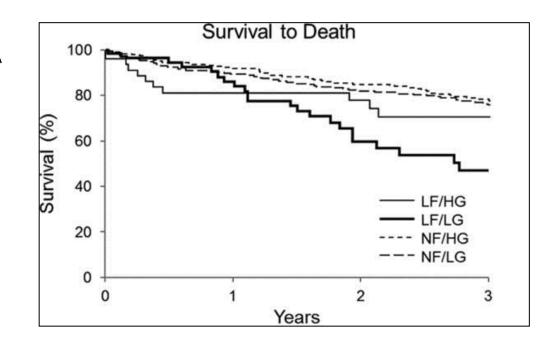
Ozkan A – Circulation 2013

- Non randomized study
- Patients without AVR
 - *Higher prevalence of diabetes*
 - Lower SVI
 - Higher sPAP
 - Higher creatinin level

Medical therapy = 2-fold increase in mortality than AVR

Since the healthier group of patients underwent surgery, it is not surprizing that AVR was associated with lower mortality

So it must be cautioned that the finding that AVR substantially reduces mortality may be an overestimate of the true benefit



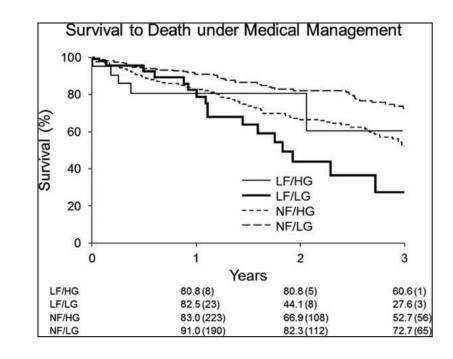
Is surgery beneficial ?

Eleid MF- Circulation. 2013;128:1781-1789

- 1704 severe AS with normal LVEF
- 352 (21%) NFLG AS
- 53 (3%) LFLG AS

Good outcome under medical therapy in NFLG AS

Reduced survival in LFLG AS



Is surgery beneficial ?

Eleid MF- Circulation. 2013;128:1781-1789

- 1704 severe AS with normal LVEF
- 352 (21%) NFLG AS
- 53 (3%) LFLG AS

Better outcome after surgery in LFLG AS

No survival benefit after surgery in NFLG AS

Take-home messages

- 1. Verify that AS is really severe
- 2. Verify that the symptoms of the patients are related to AS
- 3. Verify that the patient has both LF and LG AS
- 4. Consider comorbidity and operative risk
- 5. Propose surgery <u>in selected symptomatic patients with</u> <u>both low flow and low gradient AS and acceptable operative</u> <u>risk</u>

Don't send to surgery

patients with moderate AS !!

