

Bernard lung Bichat Hospital Paris, France

Faculty Disclosure

Bernard lung

I disclose the following financial relationships:

Consultant forr Abbott, Boehringer Ingelheim, Valtech

Paid speaker for Edwards Lifesciences

Veterans Study

- 575 patients randomised between 1977 and 1982 (Bjork-Shiley or Hancock)
- 15-year FU

PROSTHESIS	AOF	RTIC		Λ	MITRAL	
	MEC n=198	BIO n=196	р	MEC n=88	BIO n=93	р
Death	66±3	79±3	0.02	81±4	79±4	0.30
Embolism	18±4	18±4	0.66	18±5	22±5	0.96
Prosthetic thrombosis	2±1	1±1	0.33	1±1	1±1	0.95
Bleeding	51±4	30±4	0.0001	53±7	31±6	0.01
Valve failure	0±0	23±5	0.0001	5±4	44±8	0.0002
Reoperation	10±3	29±5	0.0004	25±6	50±8	0.15

(Hammermeister et al. J Am Coll Cardiol 2000;36:1152-8)

Edinburgh Heart Valve Trial

- 541 patients randomised between 1975 and 1979
 (Bjork-Shiley or Hancock / Carpentier Edwards prosthesis)
- 20-year FU

PROSTHESIS		RTIC		MITRAL			
	MEC n=109	BIO n=102	р	MEC n=129	BIO n=132	р	
Survival	28±4	31±5	0.57	22±4	18±4	0.41	
Embolism	24±6	39±9	0.13	53±7	32±6	0.32	
Bleeding	61±8	42±12	0.001	53±8	37±11	0.39	
Reoperation	7±3	56±8	0.0001	13±4	78±7	0.0001	

(Oxenham et al. Heart 2003;89:715-21)

Mechanical and Biological Aortic Prostheses in Patients Aged 55-70 Years

Linearized rates of valve-related events

Variables	MP (n = 149) %/pt-yr (95% Cl)	BP (n = 147) %/pt-yr (95% CI)	p Value
Thromboembolism	0.54 (0.14-0.94)	0.24 (0.03-0.51)	0.3
Bleeding	1.47 (0.81-2.13)	0.72 (0.25-0.19)	0.08
Endocarditis	0.38 (0.04-0.72)	0.24 (0.03-0.51)	0.7
Valve failure	0	2.17 (1.35-2.98)	0.0001
Valve thrombosis	0.23 (0.03-0.49)	0	0.2
Nonstructural dysfunction	0.23 (0.03-0.49)	0.24 (0.03-0.51)	0.6
Reoperation	0.62 (0.19-1.05)	2.32 (1.48-3.18)	0.0003

(Stassano et al. J Am Coll Cardiol 2009;54:1862-8)

Optimizing the Choice of the Prosthesis

- Mechanical prosthesis o Risk of Bleeding
 - Optimizing the choice of target INR
 - Antiplatelet drugs
 - Role of INR stability

Bioprosthesis

- → Risk of Reoperation
- – ↓ primary failure with ↑ in age
- † in reoperation risk with age and comorbidity

Risk factors for thromboembolism

Prosthesis thrombogenicity

- Low
 - Carbomedics (aortic position), Medtronic Hall, St.Jude Medical, ON-X.
- Medium
 - Other bileaflet valves.
- High
 - Lillehei-Kaster, Omniscience, Starr-Edwards, Bjork-Shiley, other tilting-disc valves.

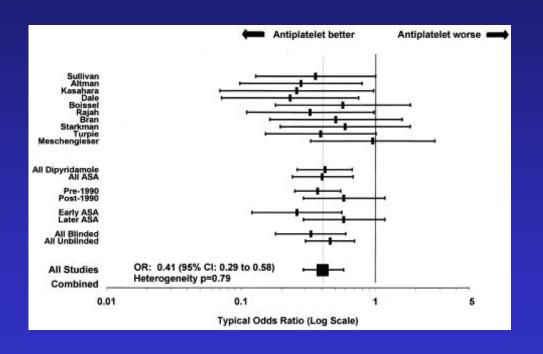
Patient-related risk factors

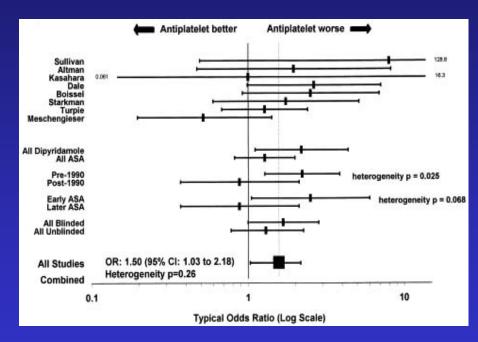
- Mitral, tricuspid, or pulmonary valve replacement.
- Previous thromboembolism.
- Atrial fibrillation.
- Mitral stenosis of any degree.
- Left ventricular ejection fraction < 35%.

Target international normalized ratio (INR) for mechanical prostheses

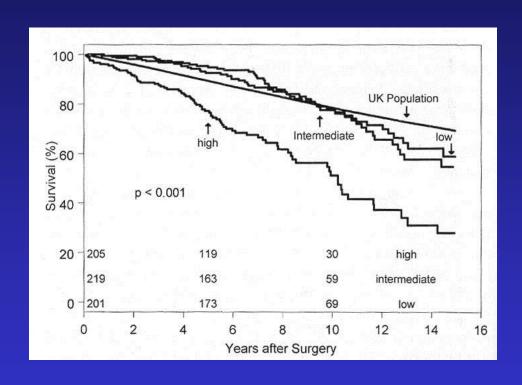
Prosthesis	Patient-related risk factors					
thrombogenicity	No risk factor	≥ 1 risk factor				
Low	2.5	3.0				
Medium	3.0	3.5				
High	3.5	4.0				

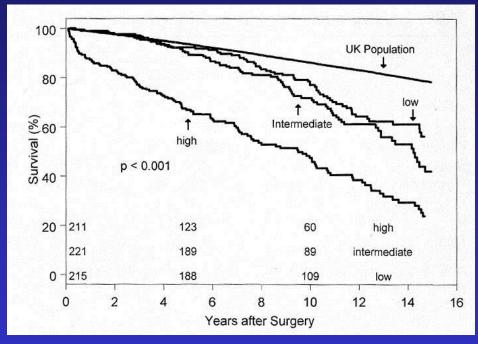
The addition of low-dose aspirin should be considered in patients with a mechanical prosthesis:


and concomitant atherosclerotic disease


after thromboembolism despite adequate INR

Antiplatelets + vit. K Antagonists Meta - Analysis


Thromboemmbolism


Major Bleeding

(Massel et al. JAm Coll Cardiol 2001;37:569-78)

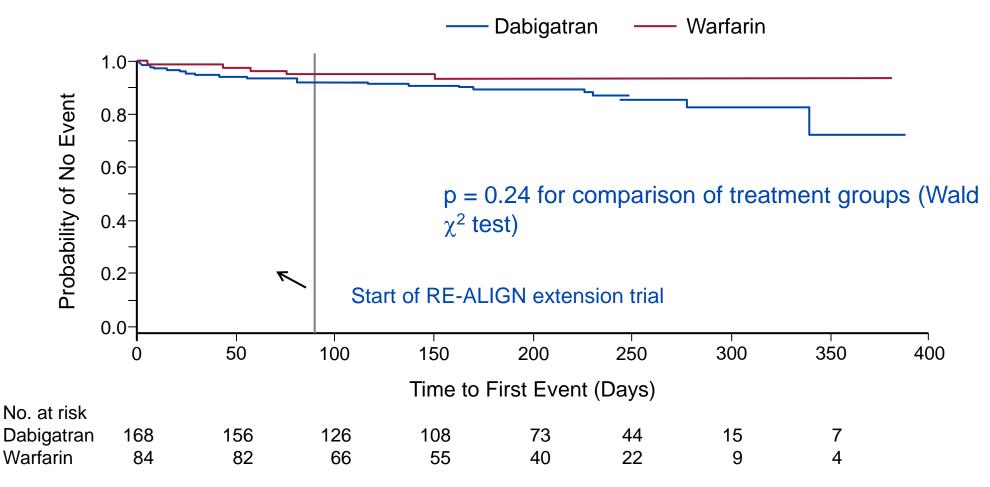
Anticoagulation Variability

1272 patients with Medtronic-Hall prosthesis

Aortic Prosthesis

Mitral Prosthesis

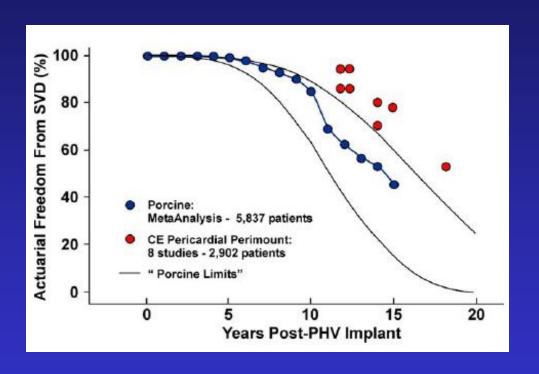
(Butchart et al. J Thorac Cardiovasc Surg 2002;123:715-23)

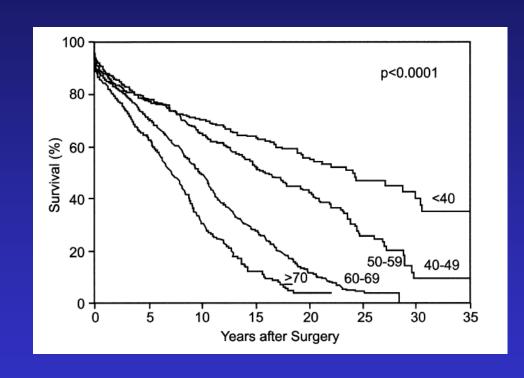

Anticoagulation Variability

Survival – Multivariate Analysis

	Relative Risk	P <
INR Variability (1 20%)	1.81	0.001
Diabetes	1.64	0.007
Age (↑ 10 yrs)	1.63	0.001
Associated CABG	1.51	0.002
Male Gender	1.49	0.001
HTN	1.43	0.01
Thromboembolism / Bleeding	1.32	0.02
Prosthetic Regurgitation	1.28	0.016
NYHA Class III / IV	1.27	0.02
Small Prosthetic Ø	1.07	0.001

(Butchart et al. J Thorac Cardiovasc Surg 2002;123:715-23)

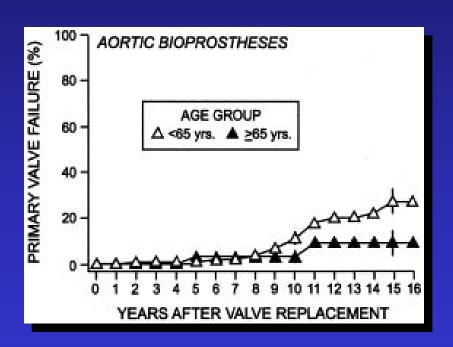

Re-Align trial: composite of a first thromboembolic event or death

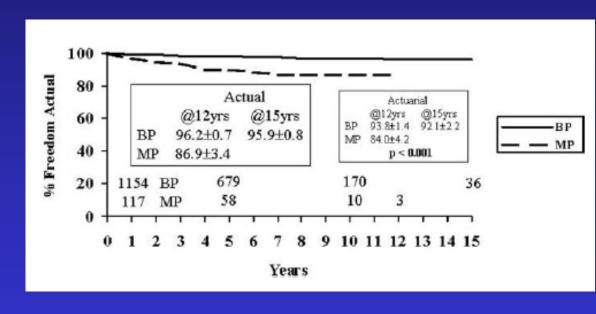


First thromboembolic event includes stroke, systemic embolism, transient ischemic attack, myocardial infarction.

(Eikelboom et al. N Engl J Med 2013;36:1206-14)

Primary Bioprosthesis Failure




(Rahimtoola J Am Coll Cardiol 2010;55:2413-26)

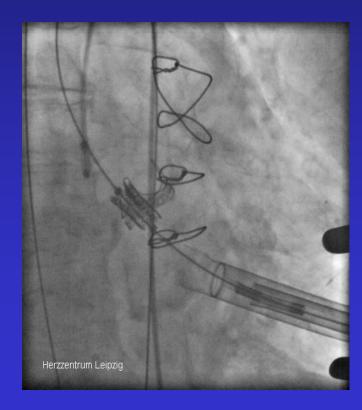
(Grunkemeier et al. J Heart Valve Dis 1999;8:466-71)

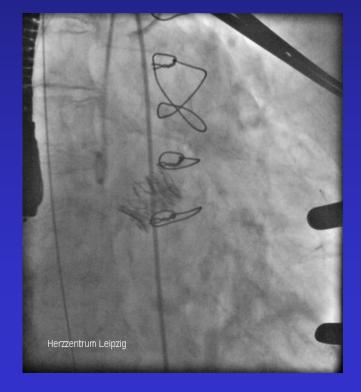
Deterioration of Bioprosthesis

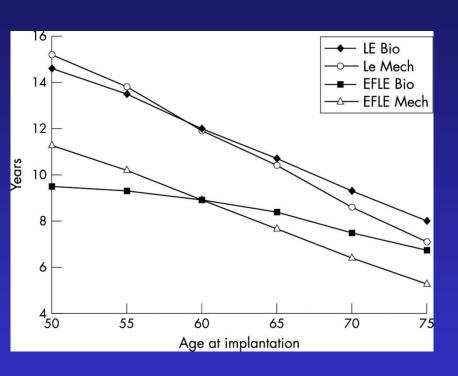
- Decrease in the risk of primary deterioration
 - To be compared with life expectancy
 - Take into account the risk related to reoperation

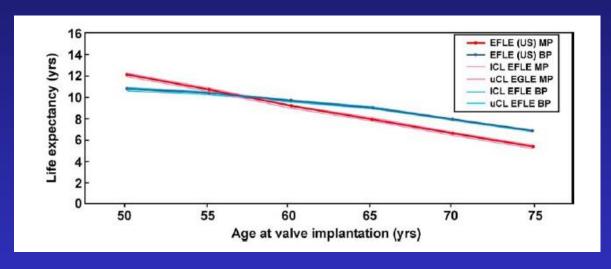
Freedom from valve-related mordidity in pts >70y.

(Hammermeister et al. J Am Coll Cardiol 2000;36:1152-8) (Chan et al. J Thorac Cardiovsc Surg 2006;131:1267-73)


"Valve-in-Valve"

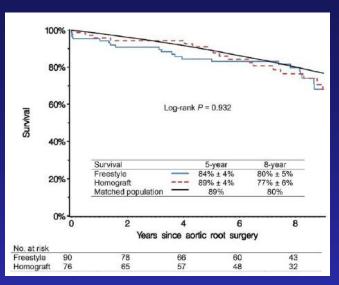




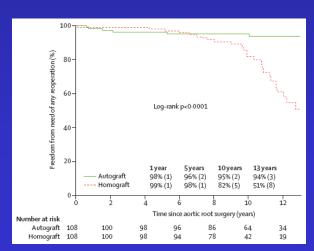


Outcome Simulation Predited Events vs. Age

(Puvimanasinghe et al. Heart 2004;90:1172-8)


(Van Geldorp et al. J Thorac Cardiovasc Surg 2009;137:881-6)

Other Biological Substitutes


- Homografts
 - Similar durability
 - Increased complexity of reinterventions

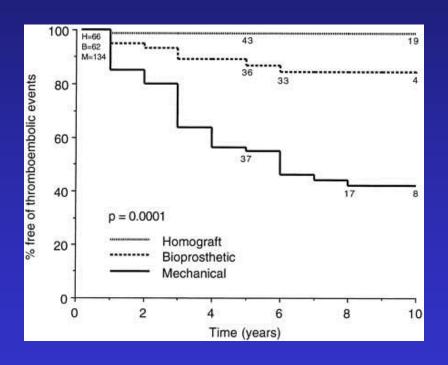
- Autografts
 - Complexity of intervention
 - 51% freedom from autograft reintervention at 18 years

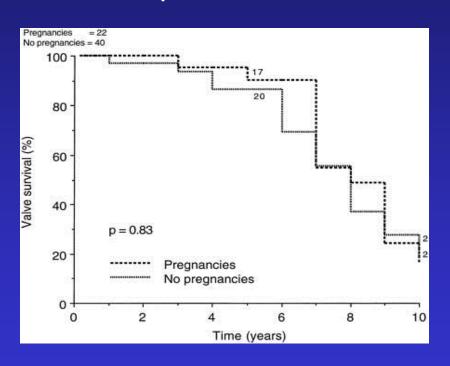
(Mokhles et al. Eur Heart J 2012;33:2213-24)

(El Hamamsy et al. J Am Coll Cardiol 2010;55:368-76)

(El Hamamsy et al. Lancet 2010;376:624-31)

Mechanical Prosthesis and Pregnancy

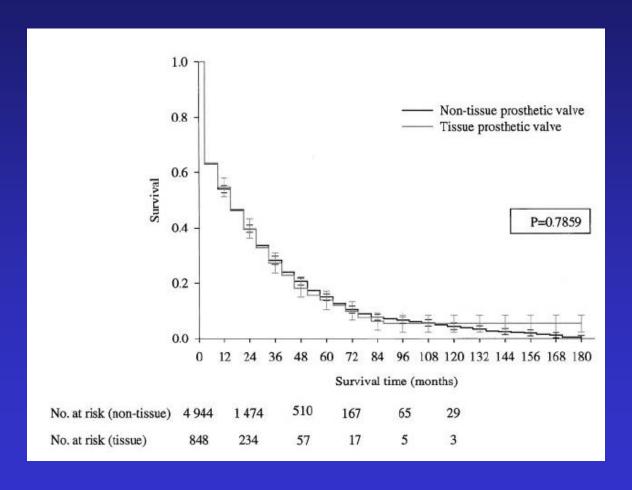

1234 pregnancies in 976 patients (2/3 mitral prosthesis)


Anticoagulation	Embryopathy (%)	Spontaneous Abortion (%)	Thrombo- Embolism (%)	Maternal Death (%)
Vit.K blockers throughout pregnancy	6.4	25	3.9	1.8
Heparin throughout pregnancy	0	24	33	15
- low-dose - adjusted-dose	0 0	20 25	60 25	40 6.7
Heparin during the first trimester, then vit.K blockers	3.4	25	9.2	4.2

(Chan et al. Arch Interm Med 2000; 160:191-6)

Desire of Pregnancy

- Difficulties of management of mechanical protheses
 - embryopathy with vit K antagonists
 - increased risk of thromboembolism with heparin



(North et al. Circulation 1999;99:2669-76)

> Favour biological subtitutes in young women

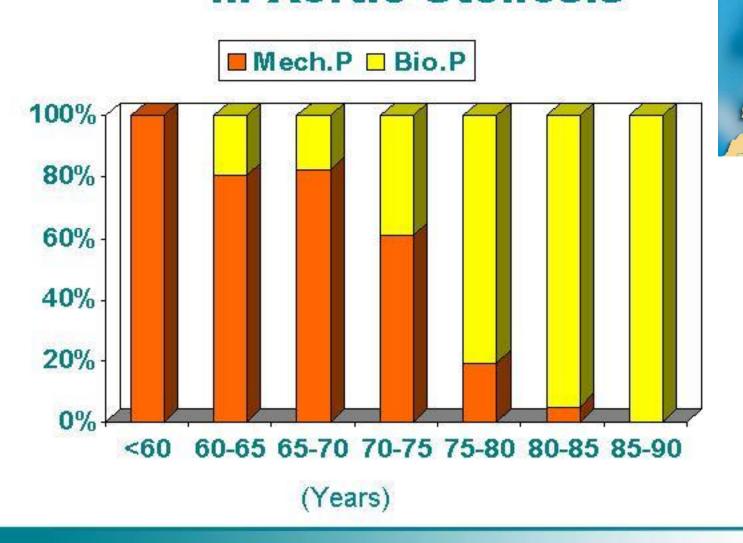
Dialysis

5858 dialysis patients undergoing valve surgery (Aortic valve replacement in 3415 patients (58%)

(Herzog et al. Circulation 2002;105:1336-41)

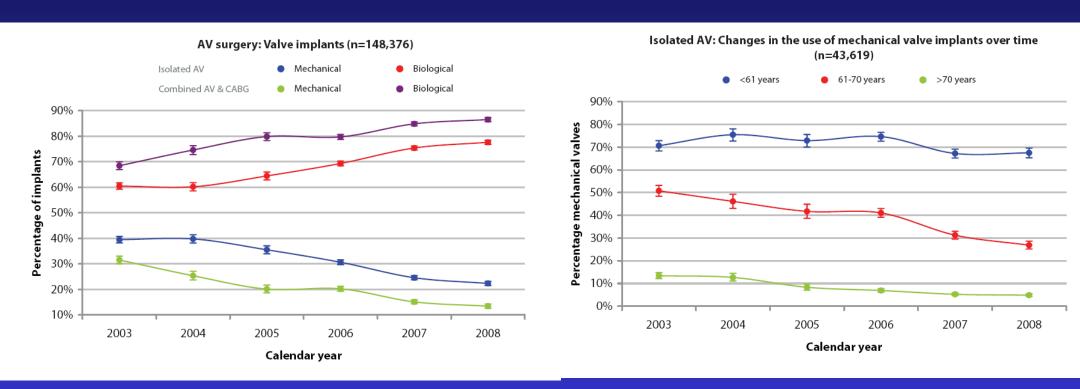
Choice of the aortic/mitral prosthesis: in favour of a mechanical prosthesis

	Class	Level
A mechanical prosthesis is recommended according to the desire of the informed patient and if there are no contraindications for long-term anticoagulation.	I	С
A mechanical prosthesis is recommended in patients at risk of accelerated structural valve deterioration.	I	С
A mechanical prosthesis is recommended in patients already on anticoagulation because of a mechanical prosthesis in another valve position.	I	С
A mechanical prosthesis should be considered in patients aged < 60 years for prosthesis in the aortic position and < 65 years for prosthesis in the mitral position.	lla	С
A mechanical prosthesis should be considered in patients with a reasonable life expectancy, for whom future redo valve surgery would be at high risk.	lla	С
A mechanical prosthesis may be considered in patients already on long-term anticoagulation due to high risk for thromboembolism.	IIb	С


Choice of the aortic/mitral prosthesis: in favour of a bioprosthesis

	Class	Level
A bioprosthesis is recommended according to the desire of the informed patient.	1	С
A bioprosthesis is recommended when good quality anticoagulation is unlikely (compliance problems, not readily available) or contraindicated because of high bleeding risk (prior major bleed, comorbidities, unwillingness, compliance problems, lifestyle, occupation).	ı	С
A bioprosthesis is recommended for reoperation for mechanical valve thrombosis despite good long-term anticoagulant control.	I	С
A bioprosthesis should be considered in patients for whom future redo valve surgery would be at low risk.	lla	С
A bioprosthesis should be considered in young women contemplating pregnancy.	lla	С
A bioprosthesis should be considered in patients aged > 65 years for prosthesis in aortic position or > 70 years in mitral position, or those with life expectancy lower than the presumed durability of the bioprosthesis.	lla	С

Type of Valve Substitute / Age in Aortic Stenosis


Valve Replacement for AS in the Elderly

Reasons for Choosing a Mechanical Prosthesis

	(%)
Renal Failure, dialysis, or hypercalcemia	1
Need for Anticoagulation because of risk factors for thrombo-embolism	1
Physician's preference	75
Patient's Preference	19
Other	0

Temporal Trends and Type of Prosthesis

(Fourth EACTS Adult Cardiac Surgical Database Report 2010)

Conclusion

- Long-term follow-up data tend to increase indications of bioprostheses, in particular by lowering the age limit.
- ESC/EACTS Guidelines favour age ranges over thresholds.
- The choice of the type of prosthesis should not stress the role of age, but take into account patient wishes and specific situations.
- Transcatheter valve-in-valve implantations may further increase the percentage of bioprostheses.
- Importance of patient information and individualized approach.

Anticoagulant Therapy in the Elderly Role of Age

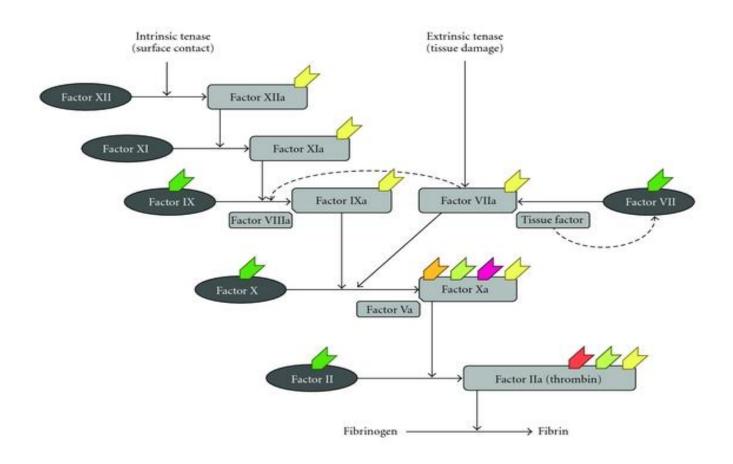
(Palaretti et al. Arch Intern Med 2000; 160:470-8)

 Prospective study: 461 pts > 75 yrs vs. 460 yrs ≤ 70 yrs matched for: sex, indications, centre

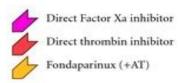
Incidence for 100 pts-yrs	> 75 yrs	<i>≤</i> 70 <i>yr</i> s	p
All bleeding	9.9	6.9	0.07
- INR 2-3	4.5 15	3.9 2.6	
- INR 3-4.5	15	2.0	
Major bleeding	2.1	1.1	0.19

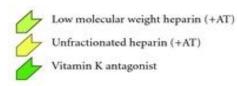
- → Increase in bleeding risk with age
- → But moderate with low anticoagulation

Anticoagulation: Randomized Trials


	Age (yrs)	MVR or double (%)	ASA (%)	Target INR	n=	TE	Maj bleed	All bleed
Saour	91% < 40	62	0	2.65 9	122 125	4.0 3.7	3.3 7.2	21.3 42.4
Altman	52	32	100	2.0-3.0 3.0-4.5	51 48	1.9 4.9		3.9 24.7
AREVA	59	4	0	2.0-3.0 3.0-4.5	188 192	1.9 1.7	4.0 5.6	11.2 20.5
GELIA Ao	60	0	-	2.0-3.5 3.0-4.5	675 672	0.45 0.66	0.92 0.78	19.5 25.4
GELIA Mi	61	100	-	2.0-3.5 3.0-4.5	182 178	2.75 1.21	0.92 0.24	34.6 49.7
ESCAT Ao	60	0	7.6	1.8-2.8 2.5-4.5	2164	0.24 0.46	1.42 1.78	-
ESCAT Mi	60	100	7.6	2.5-3.5 2.5-4.5	392	0 0	1.41 0.50	-

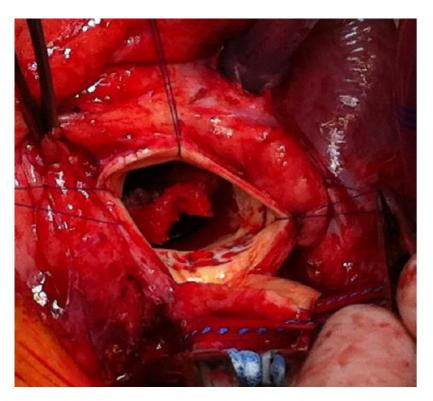
Aspirin: Randomized Trials


	Age (yrs)	MVR or double (%)	Target INR	n=	TE	Maj bleed	All bleed
Turpie	58	54	3.0-4.5	184	1.9*	6.6	22
			3.0-4.5 + ASA	186	8.5*	8.5	35
Altman	57	29	2.0-3.0 + ASA 100mg	207	0.5	3.6	-
			2.0-3.0 + ASA 650 mg	202	1.1	5.1	-
Meschengi	53	33	2.5-3.5 + ASA	258	1.3	1.1	-
eser			3.5-4.5	245	1.5	2.3	-


^{*} Major embolism or vascular death

Anti-lla et Anti-Xa

Rivaroxaban, Apixaban Dabigatran

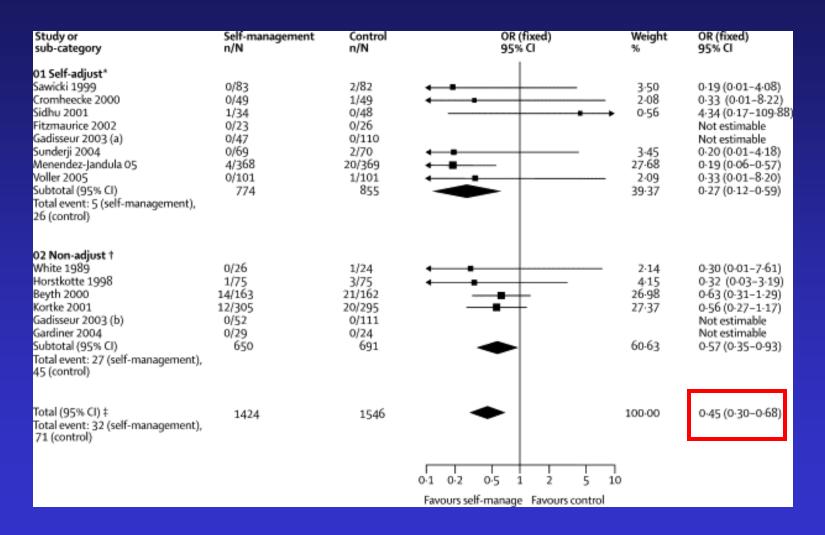


Thromboses de Prothèses Mécaniques sous Dabigatran

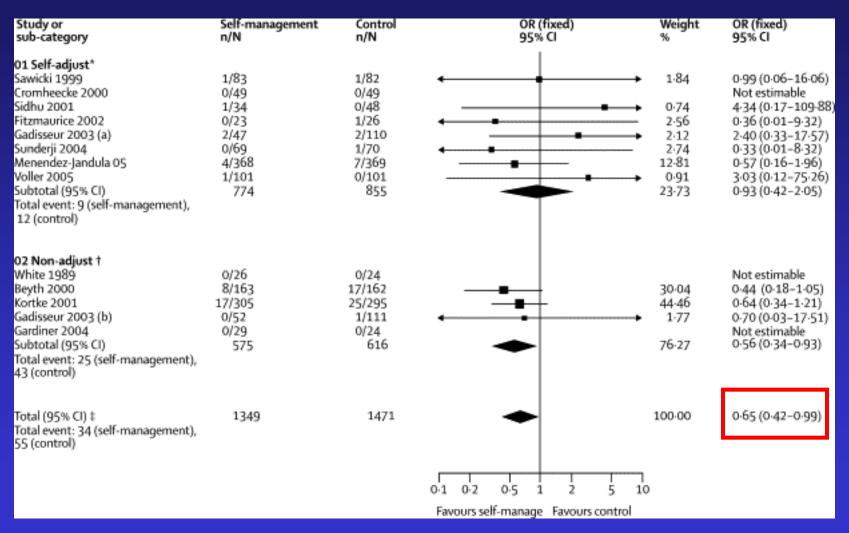
Survenues 2 et 3 mois après introduction Dabigatran 150 mg x 2

"The message is that dabigatran has really been approved only for patients who have non-valvular AF, but people are starting off-label use because of the perceived convenience of the medication"

(J Am Coll Cardiol 2012; DOI:10.1016/j.jacc.2012.06.039)


Indications for antithrombotic therapy after valvular surgery

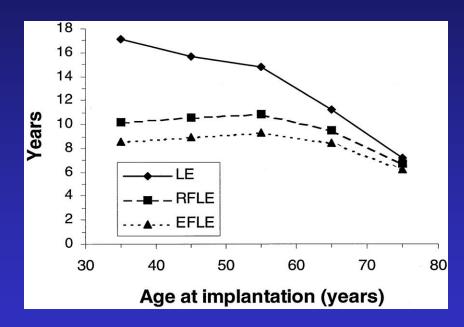
	Class	Level
Oral anticoagulation is recommended lifelong for all patients with a mechanical prosthesis.	1	В
Oral anticoagulation is recommended lifelong for patients with bioprostheses who have other indications for anticoagulation.	ı	С
The addition of low-dose aspirin should be considered in patients with a mechanical prosthesis and concomitant atherosclerotic disease.	lla	С
The addition of low-dose aspirin should be considered in patients with a mechanical prosthesis after thromboembolism despite adequate INR.	lla	С
Oral anticoagulation should be considered for the first 3 months after implantation of a mitral or tricuspid bioprosthesis.	lla	С
Oral anticoagulation should be considered for the first 3 months after mitral valve repair.	lla	С
Low-dose aspirin should be considered for the first 3 months after implantation of an aortic bioprosthesis.	lla	С
Oral anticoagulation may be considered for the first 3 months after implantation of an aortic bioprosthesis.	llb	С



INR Self-Management Thrombo-Embolic Events

(Heneghan et al. Lancet 2006;367:404-11)

INR Self-Management Severe Bleeding



(Heneghan et al. Lancet 2006;367:404-11)

Bioprosthesis Failure In Patients 40 to 75 Years Old

Life expectancy vs. reoperation-free life expectancy

Aortic bioprosthesis

(Puvimanasinghe et al. Circulation 2001;103:1535-41)

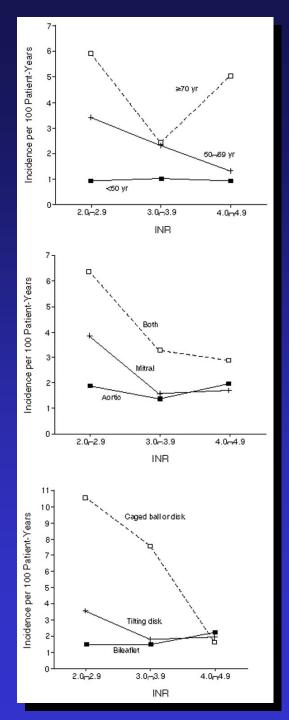
Opinion of the patient

Difficulties in Valve Selection

- The incidence of thrombo-embolism and bleeding is approximately linear, but varies according to a number of factors:
 - Patient
 - Prosthesis (type, site)
 - Modalities of anticogulant therapy

And should be interpreted by comparison with a general population

- The risk of bioprosthetic failure is not linear
- The risk linked to reoperation is variable
 - → Need for randomised series with a long follow-up


Factors Influencing the Thromboembolic Risk

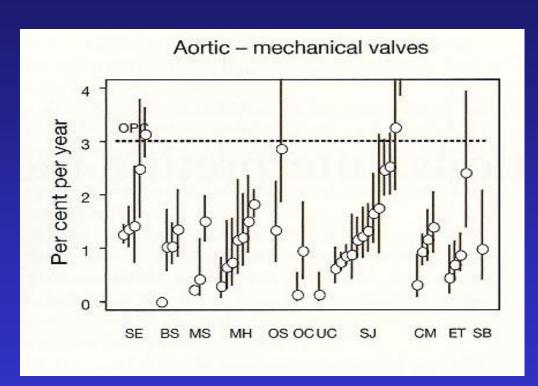
- age
- rhythm
- previous embolism
- prosthesis
 - site
 - type

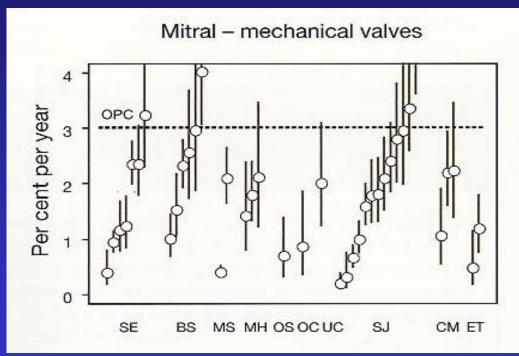
→ 2 categories

- Low risk (recent aortic prostheses with sinus rhythm)
- High risk (others)

(Cannegieter et al. N Engl J Med 1995;333:11-7)

ACC/AHA Guidelines


Table 37. Recommendations for Antithrombotic Therapy in Patients With Prosthetic Heart Valves


	Aspirin (75-100 mg)	Warfarin (INR 2.0-3.0)	Warfarin (INR 2.5-3.5)	No Warfarin
Mechanical prosthetic valves				1
AVR—low risk				
Less than 3 months	Class I	Class I	Class IIa	
Greater than 3 months	Class I	Class I		
AVR—high risk	Class I		Class I	
MVR	Class I		Class I	
Diological prostnetic valves				-
AVR—low risk				
Less than 3 months	Class I	Class IIa		Class IIb
Greater than 3 months	Class I			Class IIa
AVR—high risk	Class I	Class I		
MVR—low risk				
Less than 3 months	Class I	Class IIa		
Greater than 3 months	Class I			Class IIa
MVR—high risk	Class I	Class I		

Depending on patients' clinical status, antithrombotic therapy must be individualized (see special situations in text). In patients receiving warfarin, aspirin is recommended in virtually all situations. Risk factors: atrial fibrillation, left ventricular dysfunction, previous thromboembolism, and hypercoagulable condition. International normalized ratio (INR) should be maintained between 2.5 and 3.5 for aortic disc valves and Starr-Edwards valves. Modified from McAnulty JH, Rahimtoola SH. Antithrombotic therapy in valvular heart disease. In: Schlant R, Alexander RW, editors. Hurst's The Heart. New York, NY: McGraw-Hill, 1998:1867–74 (934). Reprinted with permission from the McGraw-Hill Companies.

AVR indicates aortic valve replacement; and MVR, mitral valve replacement.

Thromboembolism and Mechanical Prostheses Observational Data

(Butchart et al. Heart Valve Disease.

A guide to patient management after surgery. Informa Heathcare 2006)