

IMAGING INNOVATIONS : Advance Imaging Is there a role for CT/CMR

Victoria Delgado, MD, PhD Leiden University Medical Center

Faculty Disclosure

Victoria Delgado

<u>I disclose the following financial relationships:</u> **Consultant** for Medtronic and St. Jude Medical **Paid speaker** for Abbott

Role of CT/MRI in valve heart disease

- Assessment of valvular morphology
- Assessment of valvular regurgitation
- In interventional cardiology

Valvular morphology

Valvular morphology - CT

Valvular morphology-MRI

Debonnaire et al. Curr Opinion Cardiol 2012

Bicuspid aortic valve TTE TEE MDCT

Bicuspid aortic valve N = 50 severe AS 17 bicuspid

Tanaka et al. AJR 2009

Bicuspid aortic valve

N=62	MRI	TEE
Raphe visible		
Yes	52	45
No	10	9
Uncertain	-	8
BAV type RCC-NCC RCC-LCC LCC-NCC Lateral orientation Ant-post orientation Uncertain	6 46 - 8 2 -	5 40 - 7 2 8

Buchner et al. Heart 2010

- Type I: normal motion of the leaflets
- Type II: excessive motion
- Type III: restricted motion

Carpentier A. J Thorac Cardiovasc Surg 1983

Feuchtner et al. Radiol 2010

• Multi-slice CT:

- 1. Remodeling of left ventricle
- 2. Displacement of papillary muscles
- 3. Annular dilatation
- 4. Leaflet tethering

Delgado et al. JACC Imaging 2009

Delgado et al. JACC Imaging 2009

Presence of LGE in papillary muscles and association with complex vetnricular arrhythmias

N = 16 MV Prolaps

LGE-Papillary muscles	VA	No-VA
Yes	8	2
No	0	6

Han et al. JACC Cardiovasc Imag 2008

Role of CT/MRI in valve heart disease

- Assessment of valvular morphology
- Assessment of valvular regurgitation
- In interventional cardiology

MRI quantification of valvular regurgitation

3D Flow Quantification in All Valves

ΡV

3D volume scan /w 3-dir velocity encoded MRI

Courtesy J Westenberg

3D Flow Quantification in All Valves

MV flow

Courtesy J Westenberg

MR quantification

N = 30 53.3% functional 46.7% organic

2D-TTE vs. 3D TEE vs. MRI

Shanks et al. Circ Cardiovasc Imaging 2010

MR quantification

Regurgitant volume

2D TEE underestimates RVol by 21.3% compared to MRI

Shanks et al. Circ Cardiovasc Imaging 2010

MR quantification

3D TEE underestimates RVol by 1.2% compared to MRI

Shanks et al. Circ Cardiovasc Imaging 2010

Eccentric regurgitant jets

Role of CT/MRI in valve heart disease

- Assessment of valvular morphology
- Assessment of valvular regurgitation
- In interventional cardiology

Increasing number of percutanous heart valve procedures

>100,000 TAVI

>10,000 MV procedures

Why do we need 3D imaging in cardiac interventions?

Surgery

3D Imaging

Transcatheter interventions

Improving outcomes

- Advances in device technology
- Learning curve
- Patient selection
- Procedural planning
- Procedural guiding

TAVI

Overall outcomes

- 95% 30-day survival
- 69-85% 1-year survival
- 12% moderate to severe aortic regurgitation
- 19% vascular complications
- 20% acute kidney injury

Aortic annulus sizing

Edwards SAPIEN XT

20-mm	<18 mm
23-mm	18-21 mm
26-mm	22-25 mm
29-mm	25-28 mm

Medtronic CoreValve

23-mm	18-20 mm
26-mm	20-23 mm
29-mm	23-27 mm
31-mm	26-29 mm

Aortic valve annular dimensions 2D-TEE vs. 3D-TEE vs. MSCT

Circular area

Circular area Planimetered area Planimetered area

Ng et al. Circulation Cardiovasc Imag 2009

Aortic valve annular dimensions

Aortic valve annular dimensions

Aortic valve annular dimensions 2D-TEE vs. 3D-TEE vs. MSCT

Circular area

Planimetered area

2D TEE vs. MSCT

3D TEE vs. MSCT

3D TEE vs. MSCT

Ng et al. Circulation Cardiovasc Imag 2009

Aortic annulus dimensions and PVAR

THV-MDCT mean annular diameter: 0.81 95% CI: 0.68-0.88 THV-TEE annular diameter: 0.70 95% CI: 0.50-0.88

Aortic valve calcifications and PVAR

Aortic valve calcifications and PVAR

Coronary ostia

Distance relative to the annular plane ≥10-11 mm

Tops et al. J Am Coll Cardiol Imaging 2008

Coronary ostia

11% of patients the prosthesis device reaches coronary ostia

Delgado et al. EHJ 2010

Occlusion of coronary ostia by bulky calcified leaflets uncommon but fatal

Masson et al. JACC Int 2009

Peripheral arteries and aorta

Kurra et al. JTCVS 2009

Anatomical requirements TAVI

Setting the fluoroscopy planes

Kurra et al. JACC Intervent 2010

320-row CT acquisition for TAVI

- 1. ECG-triggered volume scan (one beat):
 - Aortic root
 - Coronary anatomy
 - Left ventricular geometry and function
- 2. Ultra Helical scan:
 - Subclavian arteries
 - Aorta
 - Peripheral arteries

Fast, single breath hold acquisition with low radiation and contrast dose

Procedural planning: check list

Parameters	MDCT view	Anatomical structure	Units	1 4 1
Aortic root dimensions	Double oblique transverse	Ascending aorta (1)	mm	
		Sino-tubular junction (2)	mm	
		Sinus of Valsalva (3)	mm	
		Aortic valve annulus (4)	mm	
Left ventricle	Double oblique transverse	Outflow tract (5)	mm	
Aortic valve	Double oblique transverse	Valve calcifications(6)	Score (1-4)	
Relative distance of the coronary ostia to the aortic valve	Sagital	Left main ostium(7)	mm	
annular plane	Sagittal	Right coronary ostium (8)	mm	
Peripheral arteries and thoracic aorta	Cross sectional	Luminal diameter (9)	mm	
	Stretched view	Calcifications (10)	Score	
	Stretched view	Tortuosity (10)	Score (Y/N) Angle°	

Delgado et al. Eurointervention 2010

Conclusions

- CT and MRI have a complementary role to 3D echocardiography in the evaluation of patients with valvular heart disease
 - Valvular morphology
 - Valvular regurgitation assessment
 - Selection of patients candidates for transcatheter valve repair/replacement