3D in interventional cardiology

Prof. J Zamorano

The main dilema

- New catheter-based approaches to patients with cardiac disease.
 - 1. Aortic valve implantation
 - 2. Closure of prosthetic paravalvular leaks
 - 3. Mitral repair

How can we help ? What to do ?

Fluoroscopy

Advantages

- Images interventionalists work with
- Good definition
 - Catheters and wires
 - Devices
 - Calcified and metalic structures

Limitations

- Poor anatomical definition
- Single plane
- Radiation exposure
- Contrast use

3D Echo

Advantages

- Good definition of anatomy
- Visualize the same structure in different planes
- 3D images
- Minimizes radiation exposure
- Increases safety

Limitations

- Interventionalists are not used to echo perspectives.
- Look back and forth
- Worse definition of intracardiac catheters

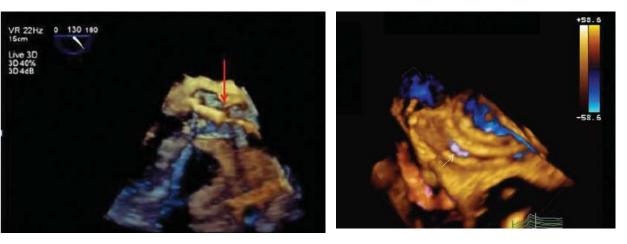
EchoNavigator

A New Concept: UNITING IMAGES

- Combines live X-ray and live Echo images for structural heart disease repair.
- EchoNavigator recognizes TEE transducer and will detect and track its position.

EAE/ASE recommendations for the use

of echocardiography in new transcatheter


interventions for valvular heart disease

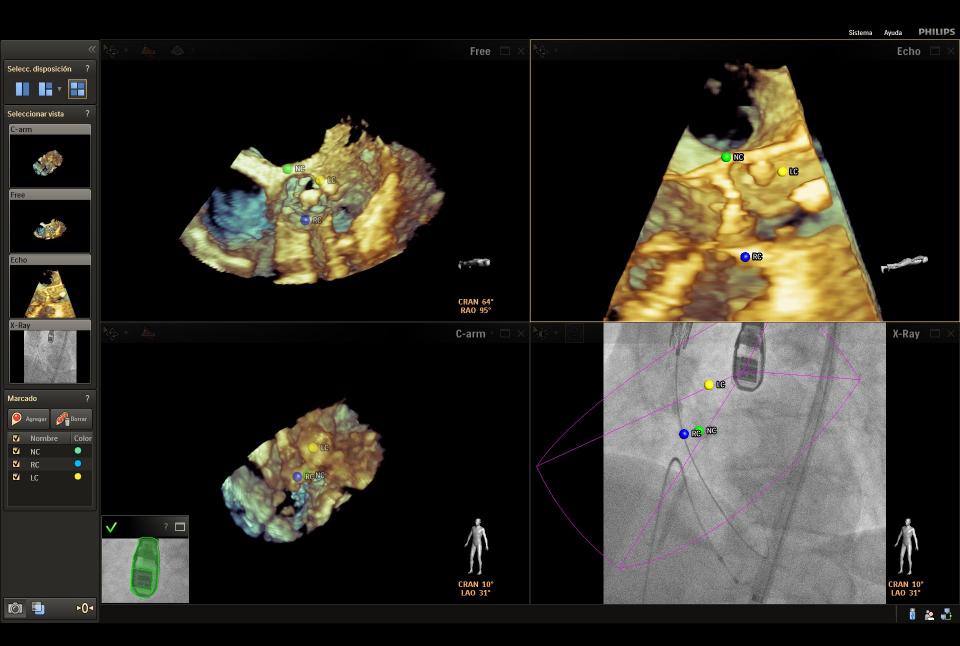
Jose L. Zamorano^{1*†}, Luigi P. Badano², Charles Bruce³, Kwan-Leung Chan⁴, Alexandra Gonçalves⁵, Rebecca T. Hahn⁶, Martin G. Keane⁷, Giovanni La Canna⁸, Mark J. Monaghan⁹, Petros Nihoyannopoulos¹⁰, Frank E. Silvestry⁷, Jean-Louis Vanoverschelde¹¹, and Linda D. Gillam^{12‡}

Transcatheter aortic valve implantation

Percutaneous transcatheter repair of paravalvular regurgitation

Percutaneous mitral valve intervention

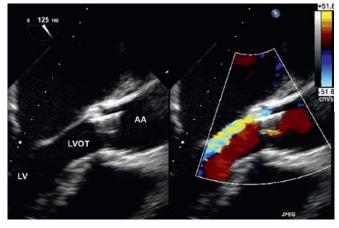
Eur H J 2011 ; JASE 2011 Eur J echo 2011


Indications

Severe Aortic Stenosis	Ao Valve area < 1 cm^2 or $0,6$ cm^2/m^2 (Edwards Inc. \rightarrow AVA < $0,8 \text{ cm}^2$) Max. Velocity > 4 m/s Mean LV/Ao gradient > 40 mmHg
Symptoms	III-IV NYHA
High risk	Logistic EuroScore >20% or STS score >10%
Contraindication to surgery	
Other possible indications:	degenerative bioprosthesis

Implant

Cross the valve. Valvuloplasty. Position and implantation. Postimplantation



Evaluation of success and complications

Echocardiography: guidance during valve implantation EUroIntervention

Alexandra Gonçalves, MD; Pedro Marcos-Alberca, MD, PhD; José Luis Zamorano*, MD, PhD, FESC

Cardiovascular Institute, Hospital Clínico San Carlos, Madrid, Spain

Abstract

Transcatheter aortic valve implantation (TAVI) by percutaneous or transapical aproach has emerged as an effective and less-invasive treatment for patients with severe symptomatic aortic valve stenosis and high surgical risk. Echocardiography is a fundamental tool in patients' selection for TAVI, for guiding the intervention as well as evaluating the position, deployment and function of the prosthesis. This review describes the role of echocardiography during the intervention, in procedure guidance and in the assessment of complications.

Aortic prosthesis misplacement

Embolization towards the aorta or left ventricle Deployed valve is positioned too high (towards the aorta) or too low (towards the mitral valve apparatus)

Aortic regurgitation

Central

Paravalvular

Mitral regurgitation

Aortic prosthesis impinges on the anterior mitral leaflet Left ventricle asynchrony caused by right ventricular pacing

Damage or distortion of the subvalvular mitral apparatus by delivery system

New left ventricular wall motion abnormalities

Acute coronary ostial occlusion

Cardiac tamponade

Perforation of the left or right ventricle

Dissection or rupture of the aortic root (0-4%) Stroke (0-10%)

Paravalvular regurgitation: an integrated approach

Measurement of paravalvular AR

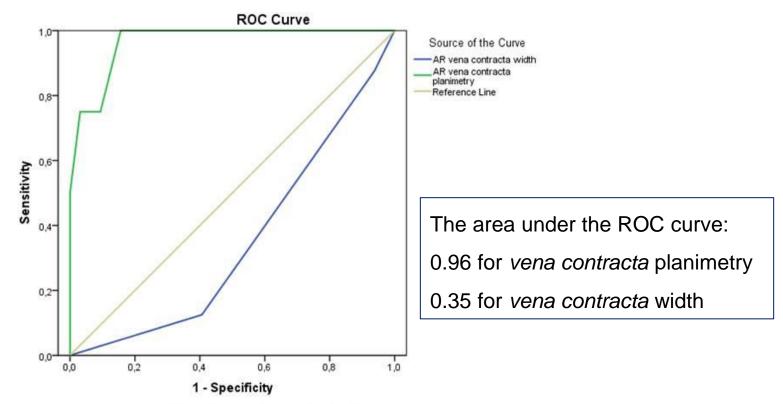
For paravalvular jets				
Mild	10% of the sewing ring			
Moderate	10–20% of the sewing ring			
Severe.	20% of the sewing ring			

However, this assumes continuity of the jet which may not be

the case for transcatheter valves.

Three-Dimensional Echocardiography in Paravalvular Aortic Regurgitation Assessment after Transcatheter Aortic Valve Implantation

Aortic Regurgitation						
	None (n=29)	Mild (n=35)	p value*	Moderate (n=8)	p value**	
LV ejection fraction (%)	63.9 (11.4)	60.4 (10.6)	0.227	58.6 (13.2)	0.696	
LV mass (g/m ²)	121.9 (39.1)	125.4 (42.6)	0.769	130.0 (27.7)	0.784	
Ao peak pres grad (mmHg)	17.6 (10.0)	14.9 (7.4)	0.245	17.4 (7.8)	0.437	
Mean Ao pres grad (mmHg)	8.4 (4.5)	7.5 (3.4)	0.418	9.0 (5.1)	0.395	
LV end diast volume (ml/m ²)	44.0 (16.3)	48.4 (21.9)	0.477	66.1 (18.6)	0.044	
Aortic valvular area (cm ²)	1.9 (0.6)	2.0 (0.6)	0.605	1.9 (0.6)	0.680	
AR volume (ml)		22.2 (5.5)		41.3 (6.4)	<0.001	
Vena contracta width (mm)		1.9 (0.16)		2.1(0.53)	0.139	
Vena contracta planimetry (cm ²)		0.09 (0.06)		0.29 (0.1)	0.001	


* p value from none AR vs. mild AR

** p value from mild AR vs. moderate AR

Three-Dimensional Echocardiography in Paravalvular Aortic Regurgitation Assessment after Transcatheter Aortic Valve Implantation

 Alexandra Gonçalves, MD, Carlos Almeria, MD, Pedro Marcos-Alberca, MD, PhD, FESC, Gisela Feltes, MD, Rosana Hernández-Antolín, MD, PhD, Enrique Rodríguez, MD, José C. Silva Cardoso, MD, PhD,
Carlos Macaya, MD, PhD, FESC, and José Luis Zamorano, MD, PhD, FESC, *Madrid, Spain; Porto, Portugal*

3D TTE *vena contracta* planimetry correlation with AR volume: 0.82, p<0.001 2D TTE *vena contracta* width correlation with AR volume: 0.66, p<0.001

Leak closure. 3D Echo info

1.- Diagnosis

2.- Monitoring transeptal

3.- Guiding intervention

4.- Assesing results

PARAVALVULAR REGURGITATION

PERI-PROCEDURAL 3D TEE

- Confirm location(s) and severity of paravalvular regurgitation.
- Exclude prosthetic and intracardiac thrombi or vegetations.
- Facilitate guidewire and catheter placement (real-time 3D TEE, injection of contrast).

ECHOCARDIOGRAPHY AND PATIENT SELECTION

- Confirms the presence of 3-4+ MR
- Determines anatomic suitability for the device
- TTE is typically used as an initial screen but TEE, ideally with 3D, is necessary to confirm eligibility

MITRAL VALVE

PERI-PROCEDURAL ECHOCARDIOGRAPHY

A-Transseptal catheterization:

 During the transseptal puncture, TEE is helpful in guiding precise positioning of the transseptal catheter, first in puncturing the atrial septum and second in positioning the MitraClip[™] guiding catheter.

•Mid-esophageal short-axis view (30°-60°) and bicaval 90° view at the level of the aortic valve

MITRAL VALVE

B-Advancing the clip delivery system towards the mitral leaflets

- The mitral clip delivery system is angled down towards the mitral leaflets, aiming for A2P2
- Inter-commissural (55°-75°) projection and LV outflow (100°-160°) projection

Advantages

- Better understanding of anatomy, placement, and postrelease evaluation.
- Facilitates catheter guidance and sizing.
- Useful for difficult locations and multiple holes.
- Minimizes fluoroscopy time.
- Increases safety for patient and interventionalist.
- More efficient procedure.

3D Echo. Integrated Info

Advantages

- Avoids confusion of different perspectives of two different imaging modalities. Integrating Echo and X-Ray images
- Improves communication between echocardiographer and interventionalist
- One-screen view for interventionalist